Home
Class 12
MATHS
The integral int(0)^(pi)sqrt(1+4"sin"^(2...

The integral `int_(0)^(pi)sqrt(1+4"sin"^(2)x/2-4"sin"x/2)dx` is equals to (a)`pi-4` (b)`(2pi)/3-4-sqrt(3)` (c)`(2pi)/3-4-sqrt(3)` (d)`4sqrt(3)-4-(pi)/3`

A

`pi-4`

B

`(2pi)/3-4-sqrt(3)`

C

`4sqrt(3)-4`

D

`4sqrt(3)-4-(pi)/3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\pi} \sqrt{1 + 4 \sin^2 \frac{x}{2} - 4 \sin \frac{x}{2}} \, dx \), we can follow these steps: ### Step 1: Rewrite the expression under the square root We start by rewriting the expression under the square root: \[ 1 + 4 \sin^2 \frac{x}{2} - 4 \sin \frac{x}{2} = 1 + 4 \left( \sin^2 \frac{x}{2} - \sin \frac{x}{2} \right) \] Now, we can complete the square for the expression \( \sin^2 \frac{x}{2} - \sin \frac{x}{2} \). ### Step 2: Complete the square Let \( y = \sin \frac{x}{2} \). Then we have: \[ y^2 - y = (y - \frac{1}{2})^2 - \frac{1}{4} \] Thus, \[ 1 + 4 \left( \sin^2 \frac{x}{2} - \sin \frac{x}{2} \right) = 1 + 4 \left( (y - \frac{1}{2})^2 - \frac{1}{4} \right) = 1 + 4(y - \frac{1}{2})^2 - 1 = 4(y - \frac{1}{2})^2 \] So, we can rewrite the integral as: \[ I = \int_{0}^{\pi} \sqrt{4 \left( \sin \frac{x}{2} - \frac{1}{2} \right)^2} \, dx = \int_{0}^{\pi} 2 \left| \sin \frac{x}{2} - \frac{1}{2} \right| \, dx \] ### Step 3: Determine the points where the expression changes sign The expression \( \sin \frac{x}{2} - \frac{1}{2} = 0 \) gives us: \[ \sin \frac{x}{2} = \frac{1}{2} \implies \frac{x}{2} = \frac{\pi}{6} \implies x = \frac{\pi}{3} \] Thus, we need to evaluate the integral from \( 0 \) to \( \frac{\pi}{3} \) and from \( \frac{\pi}{3} \) to \( \pi \). ### Step 4: Evaluate the integral in two parts 1. For \( x \in [0, \frac{\pi}{3}] \): \[ \sin \frac{x}{2} < \frac{1}{2} \implies \left| \sin \frac{x}{2} - \frac{1}{2} \right| = \frac{1}{2} - \sin \frac{x}{2} \] Thus, \[ I_1 = \int_{0}^{\frac{\pi}{3}} 2 \left( \frac{1}{2} - \sin \frac{x}{2} \right) \, dx = \int_{0}^{\frac{\pi}{3}} (1 - 2 \sin \frac{x}{2}) \, dx \] 2. For \( x \in [\frac{\pi}{3}, \pi] \): \[ \sin \frac{x}{2} > \frac{1}{2} \implies \left| \sin \frac{x}{2} - \frac{1}{2} \right| = \sin \frac{x}{2} - \frac{1}{2} \] Thus, \[ I_2 = \int_{\frac{\pi}{3}}^{\pi} 2 \left( \sin \frac{x}{2} - \frac{1}{2} \right) \, dx = \int_{\frac{\pi}{3}}^{\pi} (2 \sin \frac{x}{2} - 1) \, dx \] ### Step 5: Calculate both integrals 1. Calculate \( I_1 \): \[ I_1 = \left[ x - 4 \cos \frac{x}{2} \right]_{0}^{\frac{\pi}{3}} = \left( \frac{\pi}{3} - 4 \cos \frac{\pi}{6} \right) - (0 - 4 \cdot 1) = \frac{\pi}{3} - 4 \cdot \frac{\sqrt{3}}{2} + 4 = \frac{\pi}{3} + 4 - 2\sqrt{3} \] 2. Calculate \( I_2 \): \[ I_2 = \left[ -2 \cos \frac{x}{2} - x \right]_{\frac{\pi}{3}}^{\pi} = \left( -2 \cdot 0 - \pi \right) - \left( -2 \cdot \frac{1}{2} - \frac{\pi}{3} \right) = -\pi + 1 + \frac{\pi}{3} \] ### Step 6: Combine both results Finally, we combine \( I_1 \) and \( I_2 \): \[ I = I_1 + I_2 = \left( \frac{\pi}{3} + 4 - 2\sqrt{3} \right) + \left( -\pi + 1 + \frac{\pi}{3} \right) \] This simplifies to: \[ I = \frac{2\pi}{3} - \pi + 5 - 2\sqrt{3} = \frac{\pi}{3} + 5 - 2\sqrt{3} \] ### Final Result Thus, the value of the integral is: \[ I = \pi - 4 \]

To solve the integral \( I = \int_{0}^{\pi} \sqrt{1 + 4 \sin^2 \frac{x}{2} - 4 \sin \frac{x}{2}} \, dx \), we can follow these steps: ### Step 1: Rewrite the expression under the square root We start by rewriting the expression under the square root: \[ 1 + 4 \sin^2 \frac{x}{2} - 4 \sin \frac{x}{2} = 1 + 4 \left( \sin^2 \frac{x}{2} - \sin \frac{x}{2} \right) \] Now, we can complete the square for the expression \( \sin^2 \frac{x}{2} - \sin \frac{x}{2} \). ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise JEE ADVANCED|38 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise NUMERICAL VALUE_TYPE|28 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int_(pi//4)^(pi//2)sqrt(1-sin2x)dx

int_(0)^(pi^(2)//4) sin sqrt(x)dx equals to

The Integral int_(pi/4)^((3pi)/4)(dx)/(1+cosx) is equal to: (2) (3) (4)

int_(0)^(pi//2)(dx)/(1+e^(sqrt(2)cos(x+(pi)/(4)))) is equal to

int_(0)^(pi//2) sin^(4)xcos^(3)dx is equal to :

The value of the definite integral I = int_(0)^(pi)xsqrt(1+|cosx|) dx is equal to (A) 2sqrt(2)pi (B) sqrt(2) pi (C) 2 pi (D) 4 pi

int_0^(pi/2)sin4xcotx dx is equal to -pi/2 (2) 0 (3) pi/2 (4) pi

int_(-pi//4) ^(pi//4) x^(3) sin^(4) xdx=

The value of lim_(xrarr(pi)/(4)) (sqrt(1-sqrt(sin2x)))/(pi-4x) is

int_(pi)^((3pi)/2)(sin^(4)x+cos^(4)x)dx