Home
Class 12
MATHS
The integral int(2)^(4)(logx^(2))/(logx^...

The integral `int_(2)^(4)(logx^(2))/(logx^(2)+log(36-12x+x^(2))) dx` is equal to

A

`2`

B

`4`

C

`1`

D

`6`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{2}^{4} \frac{\log x^2}{\log x^2 + \log(36 - 12x + x^2)} \, dx, \] we will follow these steps: ### Step 1: Simplify the expression inside the integral First, observe that \[ 36 - 12x + x^2 = (x - 6)^2. \] Thus, we can rewrite the integral as: \[ I = \int_{2}^{4} \frac{\log x^2}{\log x^2 + \log((x - 6)^2)} \, dx. \] Using the property of logarithms, we can simplify: \[ \log((x - 6)^2) = 2 \log(x - 6). \] So, we have: \[ I = \int_{2}^{4} \frac{\log x^2}{\log x^2 + 2 \log(x - 6)} \, dx. \] ### Step 2: Use the property of definite integrals We will use the property that states: \[ \int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a + b - x) \, dx. \] Here, \( a = 2 \) and \( b = 4 \), so: \[ I = \int_{2}^{4} \frac{\log((2 + 4 - x)^2)}{\log((2 + 4 - x)^2) + \log((2 + 4 - x - 6)^2)} \, dx. \] Calculating \( 2 + 4 - x \): \[ 2 + 4 - x = 6 - x. \] Thus, we can rewrite the integral as: \[ I = \int_{2}^{4} \frac{\log((6 - x)^2)}{\log((6 - x)^2) + \log((6 - x - 6)^2)} \, dx = \int_{2}^{4} \frac{\log((6 - x)^2)}{\log((6 - x)^2) + \log((x - 6)^2)} \, dx. \] ### Step 3: Combine the two expressions for \( I \) Now we have two expressions for \( I \): 1. \( I = \int_{2}^{4} \frac{\log x^2}{\log x^2 + 2 \log(x - 6)} \, dx \) 2. \( I = \int_{2}^{4} \frac{\log((6 - x)^2)}{\log((6 - x)^2) + 2 \log(x - 6)} \, dx \) Adding these two equations: \[ 2I = \int_{2}^{4} \left( \frac{\log x^2 + \log((6 - x)^2)}{\log x^2 + 2 \log(x - 6)} \right) \, dx. \] ### Step 4: Simplify the numerator Using the property of logarithms: \[ \log x^2 + \log((6 - x)^2) = \log(x^2(6 - x)^2) = \log(6^2 - 12x + x^2). \] ### Step 5: Evaluate the integral Now, we can simplify the expression: \[ 2I = \int_{2}^{4} \frac{\log(6^2 - 12x + x^2)}{\log(6^2 - 12x + x^2)} \, dx = \int_{2}^{4} 1 \, dx = 4 - 2 = 2. \] Thus, we have: \[ 2I = 2 \implies I = 1. \] ### Final Answer The value of the integral is \[ \boxed{1}. \]

To solve the integral \[ I = \int_{2}^{4} \frac{\log x^2}{\log x^2 + \log(36 - 12x + x^2)} \, dx, \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise JEE ADVANCED|38 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise NUMERICAL VALUE_TYPE|28 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int(e^(5logx)-e^(4logx))/(e^(3logx)-e^(2logx))dx is equal to (A) x^2+c (B) x^3/3+c (C) x^2/2+c (D) none of these

The value of the integral int(e^(5logx)-e^(4logx))/(e^(3logx)-e^(2logx))dx is equal to (A) x^2+c (B) x^3/3+c (C) x^2/2+c (D) none of these

Evaluate int_(1)^(2)(logx)/(x)dx

int(log(x+1)-logx)/(x(x+1))dx is equal to :

The value of int_(0)^(oo)(logx)/(a^(2)+x^(2))dx is

The value of int_(0)^(oo) (logx)/(1+x^(2))dx , is

int(x^(2)(1-logx))/((logx)^(4)-x^(4))dx equals

int((x+1)(x+logx)^2)/(2x)dx

int(logx/(1+logx)^2)dx

Evaluate int((x+1)/(x))(x+logx)^(2)dx