Home
Class 12
MATHS
lim(n -> oo) (((n+1)(n+2)(n+3).......2n)...

`lim_(n -> oo) (((n+1)(n+2)(n+3).......2n) / n^(2n))^(1/n)`is equal to

A

`27/(e^(2)0`

B

`9/(e^(2))`

C

`3log3-2`

D

`18/e^(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{n \to \infty} \left( \frac{(n+1)(n+2)(n+3)\cdots(2n)}{n^{2n}} \right)^{\frac{1}{n}}, \] we can follow these steps: ### Step 1: Rewrite the limit Define \[ L = \lim_{n \to \infty} \left( \frac{(n+1)(n+2)(n+3)\cdots(2n)}{n^{2n}} \right)^{\frac{1}{n}}. \] We can express the numerator as a product of terms from \(n+1\) to \(2n\). ### Step 2: Express the product in terms of factorials The product \((n+1)(n+2)(n+3)\cdots(2n)\) can be rewritten using factorials: \[ (n+1)(n+2)(n+3)\cdots(2n) = \frac{(2n)!}{n!}. \] Thus, we can rewrite \(L\) as: \[ L = \lim_{n \to \infty} \left( \frac{(2n)!}{n! \cdot n^{2n}} \right)^{\frac{1}{n}}. \] ### Step 3: Take the logarithm To simplify the limit, we take the natural logarithm: \[ \log L = \lim_{n \to \infty} \frac{1}{n} \left( \log(2n)! - \log(n!) - 2n \log n \right). \] ### Step 4: Use Stirling's approximation Using Stirling's approximation, \(\log k! \approx k \log k - k\), we can approximate: \[ \log(2n)! \approx 2n \log(2n) - 2n = 2n \log 2 + 2n \log n - 2n, \] and \[ \log(n!) \approx n \log n - n. \] ### Step 5: Substitute the approximations Substituting these approximations into our expression for \(\log L\): \[ \log L \approx \lim_{n \to \infty} \frac{1}{n} \left( (2n \log 2 + 2n \log n - 2n) - (n \log n - n) - 2n \log n \right). \] Simplifying this gives: \[ \log L \approx \lim_{n \to \infty} \frac{1}{n} \left( 2n \log 2 + 2n \log n - 2n - n \log n + n - 2n \log n \right). \] This simplifies to: \[ \log L \approx \lim_{n \to \infty} \frac{1}{n} \left( 2n \log 2 - n \right) = 2 \log 2 - 1. \] ### Step 6: Exponentiate to find \(L\) Now, exponentiating both sides gives: \[ L = e^{2 \log 2 - 1} = \frac{4}{e}. \] ### Final Answer Thus, the limit is: \[ \lim_{n \to \infty} \left( \frac{(n+1)(n+2)(n+3)\cdots(2n)}{n^{2n}} \right)^{\frac{1}{n}} = \frac{4}{e}. \]

To solve the limit \[ \lim_{n \to \infty} \left( \frac{(n+1)(n+2)(n+3)\cdots(2n)}{n^{2n}} \right)^{\frac{1}{n}}, \] we can follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise JEE ADVANCED|38 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise NUMERICAL VALUE_TYPE|28 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

lim_(n to oo)(n!)/((n+1)!-n!)

lim_(n->oo)(1/(n^2+1)+2/(n^2+2)+3/(n^2+3)+....n/(n^2+n))

lim_(n->oo)2^(n-1)sin(a/2^n)

lim_(n rarr oo)2^(1/n)

The value of lim_(n rarr infty) (1)/(n) {(n+1)(n+2)(n+3)…(n+n)}^(1//n) is equal to

lim_(nto oo) {(1)/(n+1)+(1)/(n+2)+(1)/(n+3)+...+(1)/(n+n)} is, equal to

The value of lim_(n->oo) [tan(pi/(2n)) tan((2pi)/(2n))........tan((npi)/(2n))]^(1/n) is

The value of lim_(n to oo)(1)/(n).sum_(r=1)^(2n)(r)/(sqrt(n^(2)+r^(2))) is equal to

The value of lim_(nrarroo)((1)/(2n)+(1)/(2n+1)+(1)/(2n+2)+…..+(1)/(4n)) is equal to

The value of lim_(n to oo)((n!)/(n^(n)))^((2n^(4)+1)/(5n^(5)+1)) is equal