Home
Class 12
MATHS
The value of int(-pi//2)^(pi//2)(sin^(2)...

The value of `int_(-pi//2)^(pi//2)(sin^(2)x)/(1+2^(x))dx` is

A

`pi//4`

B

`pi//8`

C

`pi//2`

D

`4pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\sin^2 x}{1 + 2^x} \, dx, \] we will use the property of definite integrals and some substitutions. ### Step 1: Substitute \( x \) with \( -x \) We start by substituting \( x \) with \( -x \): \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\sin^2(-x)}{1 + 2^{-x}} \, dx. \] Since \( \sin(-x) = -\sin(x) \) and \( \sin^2(-x) = \sin^2(x) \), we have: \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\sin^2 x}{1 + \frac{1}{2^x}} \, dx. \] ### Step 2: Simplify the denominator The expression \( 1 + \frac{1}{2^x} \) can be rewritten as: \[ 1 + \frac{1}{2^x} = \frac{2^x + 1}{2^x}. \] Thus, we can rewrite the integral as: \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\sin^2 x \cdot 2^x}{2^x + 1} \, dx. \] ### Step 3: Combine the two expressions for \( I \) Now we have two expressions for \( I \): 1. \( I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\sin^2 x}{1 + 2^x} \, dx \) (original) 2. \( I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\sin^2 x \cdot 2^x}{2^x + 1} \, dx \) (after substitution) Let's denote the second integral as \( I_2 \): \[ I_2 = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\sin^2 x \cdot 2^x}{2^x + 1} \, dx. \] ### Step 4: Add the two integrals Now, we add the two integrals: \[ 2I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left( \frac{\sin^2 x}{1 + 2^x} + \frac{\sin^2 x \cdot 2^x}{2^x + 1} \right) \, dx. \] The expression simplifies to: \[ 2I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2 x \, dx. \] ### Step 5: Evaluate the integral of \( \sin^2 x \) Using the identity \( \sin^2 x = \frac{1 - \cos(2x)}{2} \): \[ \int \sin^2 x \, dx = \int \frac{1 - \cos(2x)}{2} \, dx = \frac{x}{2} - \frac{\sin(2x)}{4}. \] Now, we evaluate: \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2 x \, dx = \left[ \frac{x}{2} - \frac{\sin(2x)}{4} \right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}}. \] Calculating the limits: At \( x = \frac{\pi}{2} \): \[ \frac{\frac{\pi}{2}}{2} - \frac{\sin(\pi)}{4} = \frac{\pi}{4} - 0 = \frac{\pi}{4}. \] At \( x = -\frac{\pi}{2} \): \[ \frac{-\frac{\pi}{2}}{2} - \frac{\sin(-\pi)}{4} = -\frac{\pi}{4} - 0 = -\frac{\pi}{4}. \] Thus, \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2 x \, dx = \frac{\pi}{4} - (-\frac{\pi}{4}) = \frac{\pi}{2}. \] ### Step 6: Solve for \( I \) Now substituting back: \[ 2I = \frac{\pi}{2} \implies I = \frac{\pi}{4}. \] ### Final Answer Thus, the value of the integral is: \[ \boxed{\frac{\pi}{4}}. \]

To solve the integral \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\sin^2 x}{1 + 2^x} \, dx, \] we will use the property of definite integrals and some substitutions. ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise JEE ADVANCED|38 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise NUMERICAL VALUE_TYPE|28 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int_(-pi//2)^(pi//2)sin^2x\ dx

Evaluate: int_(-pi//2)^(pi//2)sin^7x dx

The value of int_(-pi//4)^(pi//4)(e^(x)sec^(2)x)/(e^(2x)-1)dx , is

Evaluate : int_(-pi/2) ^(pi/2) sin^2x dx

The value of int_(-pi//2)^(pi//2)(x^(2)+x cosx+tan^(5)x+1)dx is equal to

int_(-pi/2)^(pi/2) |sin x| dx

The value of int_(-pi//2)^(pi//2) sin{log(x+sqrt(x^(2)+1)}dx is

The value of int_(0)^(pi)(|x|sin^(2)x)/(1+2|cosx|sinx)dx is equal to

The value of int_(pi//6)^(pi//3) (1)/( sin 2x) dx is

int_(0)^(pi//2) sin^(2) x dx