To solve the integral
\[
I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\sin^2 x}{1 + 2^x} \, dx,
\]
we will use the property of definite integrals and some substitutions.
### Step 1: Substitute \( x \) with \( -x \)
We start by substituting \( x \) with \( -x \):
\[
I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\sin^2(-x)}{1 + 2^{-x}} \, dx.
\]
Since \( \sin(-x) = -\sin(x) \) and \( \sin^2(-x) = \sin^2(x) \), we have:
\[
I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\sin^2 x}{1 + \frac{1}{2^x}} \, dx.
\]
### Step 2: Simplify the denominator
The expression \( 1 + \frac{1}{2^x} \) can be rewritten as:
\[
1 + \frac{1}{2^x} = \frac{2^x + 1}{2^x}.
\]
Thus, we can rewrite the integral as:
\[
I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\sin^2 x \cdot 2^x}{2^x + 1} \, dx.
\]
### Step 3: Combine the two expressions for \( I \)
Now we have two expressions for \( I \):
1. \( I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\sin^2 x}{1 + 2^x} \, dx \) (original)
2. \( I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\sin^2 x \cdot 2^x}{2^x + 1} \, dx \) (after substitution)
Let's denote the second integral as \( I_2 \):
\[
I_2 = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\sin^2 x \cdot 2^x}{2^x + 1} \, dx.
\]
### Step 4: Add the two integrals
Now, we add the two integrals:
\[
2I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left( \frac{\sin^2 x}{1 + 2^x} + \frac{\sin^2 x \cdot 2^x}{2^x + 1} \right) \, dx.
\]
The expression simplifies to:
\[
2I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2 x \, dx.
\]
### Step 5: Evaluate the integral of \( \sin^2 x \)
Using the identity \( \sin^2 x = \frac{1 - \cos(2x)}{2} \):
\[
\int \sin^2 x \, dx = \int \frac{1 - \cos(2x)}{2} \, dx = \frac{x}{2} - \frac{\sin(2x)}{4}.
\]
Now, we evaluate:
\[
\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2 x \, dx = \left[ \frac{x}{2} - \frac{\sin(2x)}{4} \right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}}.
\]
Calculating the limits:
At \( x = \frac{\pi}{2} \):
\[
\frac{\frac{\pi}{2}}{2} - \frac{\sin(\pi)}{4} = \frac{\pi}{4} - 0 = \frac{\pi}{4}.
\]
At \( x = -\frac{\pi}{2} \):
\[
\frac{-\frac{\pi}{2}}{2} - \frac{\sin(-\pi)}{4} = -\frac{\pi}{4} - 0 = -\frac{\pi}{4}.
\]
Thus,
\[
\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2 x \, dx = \frac{\pi}{4} - (-\frac{\pi}{4}) = \frac{\pi}{2}.
\]
### Step 6: Solve for \( I \)
Now substituting back:
\[
2I = \frac{\pi}{2} \implies I = \frac{\pi}{4}.
\]
### Final Answer
Thus, the value of the integral is:
\[
\boxed{\frac{\pi}{4}}.
\]