Home
Class 12
MATHS
If p and p' are the distances of the ori...

If p and p' are the distances of the origin from the lines `x "sec" alpha + y " cosec" alpha = k " and " x "cos" alpha-y " sin" alpha = k`
`"cos" 2alpha, " then prove that 4p^(2) + p'^(2) = k^(2).`

Text Solution

AI Generated Solution

To prove that \( 4p^2 + p'^2 = k^2 \), we will first find the distances \( p \) and \( p' \) from the origin to the given lines using the formula for the distance from a point to a line. ### Step 1: Identify the lines and the point We have the following lines: 1. \( x \sec \alpha + y \csc \alpha = k \) 2. \( x \cos \alpha - y \sin \alpha = k \cos 2\alpha \) The point from which we need to find the distances is the origin \( O(0, 0) \). ...
Promotional Banner

Topper's Solved these Questions

  • STRAIGHT LINES

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 2.4|8 Videos
  • STRAIGHT LINES

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 2.5|8 Videos
  • STRAIGHT LINES

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 2.2|4 Videos
  • STRAIGHT LINE

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|8 Videos
  • THEORY OF EQUATIONS

    CENGAGE ENGLISH|Exercise JEE ADVANCED (Numerical Value Type )|1 Videos

Similar Questions

Explore conceptually related problems

Locus of the point of intersection of lines x cosalpha + y sin alpha = a and x sin alpha - y cos alpha =b (alpha in R ) is

If p sin^(3)alpha+qcos^(3)alpha=sinalphacosalpha and p sinalpha - q cos alpha=0, then prove that : p^(2)+q^(2)=1

If x sin alpha = y cos alpha, prove that : x/(sec 2alpha) + y/(cosec 2 alpha) = x

Find the length of perpendicular from the point (a cos alpha, a sin alpha) to the line x cos alpha+y sin alpha=p .

If the line y cos alpha = x sin alpha +a cos alpha be a tangent to the circle x^(2)+y^(2)=a^(2) , then

The locus of the centre of the circle (xcos alpha + y sin alpha - a)^2 + (x sin alpha - y cos alpha - b)^2= k^2 if alpha varies, is

If x= cos alpha+ i sin alpha, y = cos beta+ i sin beta, then prove that (x-y)/(x+y) =i (tan )(alpha-beta)/2

The lines x cos alpha + y sin alpha = P_1 and x cos beta + y sin beta = P_2 will be perpendicular, if :

The lines x cos alpha + y sin alpha = P_1 and x cos beta + y sin beta = P_2 will be perpendicular, if :

The coordinates of the point at which the line x cos alpha + y sin alpha + a sin alpha = 0 touches the parabola y^(2) = 4x are