Home
Class 12
MATHS
Sove 2 cos^(-1) x = sin^(-1) (2 x sqrt(1...

Sove `2 cos^(-1) x = sin^(-1) (2 x sqrt(1 - x^(2)))`

Text Solution

Verified by Experts

Let x = cos y, where `0 le y le pi, |x| le 1`
`2 cos^(-1) x = sin^(-1) (2 x sqrt(1 -x^(2)))`...(i)
`rArr 2 cos^(-1) (cos y) = sin^(-1) (2 cos y sqrt(1 - cos^(2) y))`
`= sin^(-1) (2 cos y sin y)`
`= sin^(-1) (sin 2 y)`
`rArr sin^(-1) (sin 2 y) = 2y " for " -pi//2 le y le pi//4`
and `2 cos^(-1) (cos y) = 2y " for " 0 le y le pi`
Thus, Eq. (i) holds only when
`y in [0, pi//4]`
`rArr x in [1//sqrt2, 1]`
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Illustration|85 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.1|12 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

If x lt 0 , then prove that cos^(-1) x = pi - sin^(-1) sqrt(1 - x^(2))

Prove that cos ^(-1) x = 2 sin ^(-1).sqrt(1-x)/(2)

(sin^(-1)x)/(sqrt(1-x^(2))

Find the value of x for which f(x) = 2 sin^(-1) sqrt(1 - x) + sin^(-1) (2 sqrt(x - x^(2))) is constant

The solution set of equation sin^(-1) sqrt(1-x^2) + cos^(-1) x = cot^(-1) (sqrt(1 - x^2)/x) - sin^(-1) x , is

Prove that : cos^(-1) x = 2 cos^(-1) sqrt((1+x)/(2)) (ii) Prove that : tan^(-1)((cosx + sin x)/(cosx - sin x)) = (pi)/(4)+ x

Statement -1: if -1lexle1 then sin^(-1)(-x)=-sin^(-1)x and cos^(-1)(-x)=pi-cos^(-1)x Statement-2: If -1lexlex then cos^(-1)x=2sin^(-1)sqrt((1-x)/(2))= 2cos^(-1)sqrt((1+x)/(2))

Prove that sin^(-1). ((x + sqrt(1 - x^(2))/(sqrt2)) = sin^(-1) x + (pi)/(4) , where - (1)/(sqrt2) lt x lt(1)/(sqrt2)

Prove that : sin^(-1) ""(x)/(sqrt(1 + x^(2))) + cos ^(-1) "" (x + 1)/( sqrt( x^(2) + 2x + 2)) = tan^(-1) ( x^(2) + x + 1)

If x<0,t h e ntan^(-1)x is equal to -pi+cot^(-1)1/x (b) sin^(-1)x/(sqrt(1+x^2)) -cos^(-1)1/(sqrt(1+x^2)) (d) -cos e c^(-1)(sqrt(1+x^2))/x