Home
Class 12
MATHS
Solve the equation sqrt(|sin^(-1)|"cos"|...

Solve the equation `sqrt(|sin^(-1)|"cos"||+|cos^1|sinx||)=sin^(-1)|cosx|-cos^(-1)|sinx|,(-pi)/2lt=xlt=pi/2dot`

Text Solution

AI Generated Solution

To solve the equation \[ \sqrt{|\sin^{-1}(\cos x)| + |\cos^{-1}(\sin x)|} = \sin^{-1}(|\cos x|) - \cos^{-1}(|\sin x|), \quad -\frac{\pi}{2} < x < \frac{\pi}{2}, \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Illustration|85 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.1|12 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

Solve the equation (sqrt(3))/2sinx-cosx=cos^2x

Solve the equation (sqrt(3))/2sinx-cosx=cos^2x

Solve the equation (sinx+cosx)^(1+sin2x)=2, when 0lt=xlt=pi

Solve the equation sin^(-1)6 x+sin^(-1)6sqrt(3)x=(-pi)/2dot

Solve the equation sin^(-1)6 x+sin^(-1)6sqrt(3)x=(-pi)/2dot

Solve the equation sin^(-1)x+sin^(-1)6sqrt(3)x=(-pi)/2dot

Solve sin^(-1)xlt=cos^(-1)xdot

Solve sin^(-1)xlt=cos^(-1)xdot

Solve the equation 2(cos x+cos2x)+sin2x(1+2cos x)=2sinx for (-pilt=xlt=pi)

Solve cos^(-1)(cosx)>sin^(-1)(sinx),x in [0,2pi]