Home
Class 12
MATHS
If 0lta1lta2lt....ltan , then prove that...

If `0lta_1lta_2lt....lta_n ,` then prove that `tan^(-1)((a_1x-y) /(x+a_1y))+tan^(-1)((a_2-a_1) /(1+a_2a_1))+tan^(-1)((a_3-a_2)/(1+a_3a_2))+.......+tan^(-1)((a_n-a_(n-1)) /(1+a_n a_(n-1)))+tan^(-1)(1/(a_n))=tan^(-1)(x/y)dot`

Text Solution

Verified by Experts

Here,
`tan^(_1) ((a_(1) x- y)/(a + a_(1) y)) = tan^(-1) ((a_(1) - (y)/(x))/(1 + a_(1) (y)/(x))) = tan^(-1) a_(1) - tan^(-1) (y)/(x)`
`tan^(-1) ((a_(2) -a_(1))/(1 + a_(2) a_(1))) = tan^(-1) a_(2) - tan^(-1) a_(1)`
`{:(tan^(-1) ((a_(3) - a_(2))/(1 + a_(3) a_(2))) = tan^(-1) a_(3) - tan^(-1) a_(2)),(vdots),(tan^(-1) ((a_(n) - a_(n -1))/(1 + a_(n) a_(n -1))) = tan^(-1) a_(n) - tan^(-1) a_(n -1)):}`
`tan^(-1) ((1)/(a_(n))) = cot^(-1) a_(n)`
Adding, we get
`L.H.S. = tan^(-1) a_(n) - tan^(-1) (y)/(x) = (pi)/(2) - tan^(-1) (y)/(x)`
`= cot^(-1) (y)/(x) = tan^(-1) (x)/(y) = R.H.S`
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Illustration|85 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.1|12 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

If c_i >0 for i=1,\ 2,\ ,\ n , prove that tan^(-1)((c_1x-y)/(c_1y+x))+tan^(-1)((c_2-c_1)/(1+c_2c_1))+tan^(-1)((c_3-c_2)/(1+c_3c_2))+\ dot+ tan^(-1)(1/(c_n)) = tan^(-1)(x/y)

If a_1, a_2,...... ,a_n >0, then prove that (a_1)/(a_2)+(a_2)/(a_3)+(a_3)/(a_4)+.....+(a_(n-1))/(a_n)+(a_n)/(a_1)> n

tan^(-1)[(C_(1)x-y)/(c_(1)y+x)]+tan^(-1)[(C_(2)-C_(1))/(1+C_(1)C_(2))]..+tan^(-1)[(1)/(c_(n))] is equal to

If a_1, a_2,a_3, ,a_n is an A.P. with common difference d , then prove that "tan"[tan^(-1)(d/(1+a_1a_2))+tan^(-1)(d/(1+a_2a_3))+tan^(-1)(d/(1+a_(n-1)a_n))]=((n-1)d)/(1+a_1a_n)

If a_1, a_2,a_3, ,a_n is an A.P. with common difference d , then prove that "tan"[tan^(-1)(d/(1+a_1a_2))+tan^(-1)(d/(1+a_2a_3))+tan^(-1)(d/(11+a_(n-1)a_n))]=((n-1)d)/(1+a_1a_n)

If a_(1), a_(2), a_(3),...., a_(n) is an A.P. with common difference d, then prove that tan[tan^(-1) ((d)/(1 + a_(1) a_(2))) + tan^(-1) ((d)/(1 + a_(2) a_(3))) + ...+ tan^(-1) ((d)/(1 + a_( - 1)a_(n)))] = ((n -1)d)/(1 + a_(1) a_(n))

If a_1,a_2,a_3,……a_n are in A.P. [1/(a_1a_n)+1/(a_2a_(n-1))+1/(a_3a_(n-2))+..+1/(a_na_1)]

If a_1,a_2,a_3,...,a_(n+1) are in A.P. , then 1/(a_1a_2)+1/(a_2a_3)....+1/(a_na_(n+1)) is

If a_1,a_2,a_3,…………..a_n are in A.P. whose common difference is d, show tht sum_2^ntan^-1 d/(1+a_(n-1)a_n)= tan^-1 ((a_n-a_1)/(1+a_na_1))

If a_1,a_2 ...a_n are nth roots of unity then 1/(1-a_1) +1/(1-a_2)+1/(1-a_3)..+1/(1-a_n) is equal to