Home
Class 12
MATHS
Find the number of positive integral sol...

Find the number of positive integral solution of the equation `tan^(-1)x+cos^(-1)(y/(sqrt(1-y^2)))=sin^(-1)(3/(sqrt(10)))`

A

`(1,2 )` & `(2,7)`

B

`(1,-2 )` & `(2,7)`

C

`(1,2 )` & `(-2,7)`

D

`(1,2 )` & `(2,-7)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the number of positive integral solutions of the equation \[ \tan^{-1}(x) + \cos^{-1}\left(\frac{y}{\sqrt{1-y^2}}\right) = \sin^{-1}\left(\frac{3}{\sqrt{10}}\right), \] we will follow these steps: ### Step 1: Rewrite the equation using trigonometric identities. We know that \[ \cos^{-1}\left(\frac{y}{\sqrt{1-y^2}}\right) = \tan^{-1}\left(\frac{1}{y}\right), \] because if we let \( \theta = \cos^{-1}\left(\frac{y}{\sqrt{1-y^2}}\right) \), then \( \tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} = \frac{\sqrt{1-y^2}}{y} \), which gives us \( \tan^{-1}\left(\frac{1}{y}\right) \). Thus, we can rewrite the equation as: \[ \tan^{-1}(x) + \tan^{-1}\left(\frac{1}{y}\right) = \sin^{-1}\left(\frac{3}{\sqrt{10}}\right). \] ### Step 2: Convert \(\sin^{-1}\left(\frac{3}{\sqrt{10}}\right)\) to \(\tan^{-1}\). Using the identity for \(\sin^{-1}(a)\): \[ \tan^{-1}\left(\frac{a}{\sqrt{1-a^2}}\right), \] we find: \[ \sin^{-1}\left(\frac{3}{\sqrt{10}}\right) = \tan^{-1}\left(\frac{3}{\sqrt{10 - 9}}\right) = \tan^{-1}(3). \] ### Step 3: Substitute back into the equation. Now, we have: \[ \tan^{-1}(x) + \tan^{-1}\left(\frac{1}{y}\right) = \tan^{-1}(3). \] ### Step 4: Use the tangent addition formula. Using the formula for the tangent of a sum, we have: \[ \tan^{-1}(x) + \tan^{-1}\left(\frac{1}{y}\right) = \tan^{-1}\left(\frac{x + \frac{1}{y}}{1 - x \cdot \frac{1}{y}}\right). \] Setting this equal to \(\tan^{-1}(3)\), we get: \[ \frac{x + \frac{1}{y}}{1 - \frac{x}{y}} = 3. \] ### Step 5: Cross-multiply and simplify. Cross-multiplying gives: \[ x + \frac{1}{y} = 3\left(1 - \frac{x}{y}\right). \] This simplifies to: \[ x + \frac{1}{y} = 3 - \frac{3x}{y}. \] Rearranging gives: \[ x + \frac{3x}{y} + \frac{1}{y} = 3. \] ### Step 6: Combine terms. This can be rewritten as: \[ x\left(1 + \frac{3}{y}\right) + \frac{1}{y} = 3. \] ### Step 7: Solve for \(y\). Rearranging gives: \[ x\left(1 + \frac{3}{y}\right) = 3 - \frac{1}{y}. \] Multiplying through by \(y\) to eliminate the fraction gives: \[ xy + 3x = 3y - 1. \] Rearranging leads to: \[ xy - 3y + 3x + 1 = 0. \] ### Step 8: Factor the equation. This is a linear equation in \(y\): \[ y(x - 3) = -3x - 1. \] Thus, \[ y = \frac{-3x - 1}{x - 3}. \] ### Step 9: Find positive integer solutions. For \(y\) to be positive, the numerator and denominator must have the same sign. We analyze the cases: 1. **Case 1:** \(x - 3 > 0 \Rightarrow x > 3\) and \(-3x - 1 < 0 \Rightarrow x < -\frac{1}{3}\) (not possible since \(x\) is positive). 2. **Case 2:** \(x - 3 < 0 \Rightarrow x < 3\) and \(-3x - 1 > 0 \Rightarrow x < -\frac{1}{3}\) (not applicable). ### Step 10: Check integer values. We can check integer values for \(x = 1\) and \(x = 2\): - For \(x = 1\): \[ y = \frac{-3(1) - 1}{1 - 3} = \frac{-4}{-2} = 2. \] - For \(x = 2\): \[ y = \frac{-3(2) - 1}{2 - 3} = \frac{-7}{-1} = 7. \] Thus, the pairs \((x, y)\) are \((1, 2)\) and \((2, 7)\). ### Conclusion The number of positive integral solutions is **2**: \((1, 2)\) and \((2, 7)\). ---

To find the number of positive integral solutions of the equation \[ \tan^{-1}(x) + \cos^{-1}\left(\frac{y}{\sqrt{1-y^2}}\right) = \sin^{-1}\left(\frac{3}{\sqrt{10}}\right), \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Illustration|85 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.1|12 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

Find the number of positive integral solution of the equation Tan^(-1)x+Tan^(-1)(1//y)=Tan^(-1)3 is

The number of positive integral solutions of tan^(-1)x + cot^(-1)y= tan^(-1)3 is :

Find the number of equal positive integral solutions of equation x_1+x_2+x_3=10.

Find the number of positive integral solutions satisfying the equation (x_1+x_2+x_3)(y_1+y_2)=77.

Find the number of positive integral solutions satisfying the equation (x_1+x_2+x_3)(y_1+y_2)=77.

The number of real solution(s) of the equation sin^(-1)sqrt(x^(2)-x+1)+cos^(-1)sqrt(x^(2)-x)=pi is/are

The number of solutions for the equation sin^(-1) sqrt((x^(2)-x+1))+cos^(-1)sqrt((x^(2)-x))=pi is :

The number of real solution of the equation tan^(-1) sqrt(x^(2) - 3x + 2) + cos^(-1) sqrt(4x - x^(2) -3) = pi is

Find the smallest positive root of the equation sqrt(sin(1-x))=sqrt(cos"x")

The sum of all the solution(s) of the equation sin^(-1)2x=cos^(-1)x is 0 (2) 2/(sqrt(5)) (3) 1/(sqrt(5)) (4) (-1)/(sqrt(5))