Home
Class 12
MATHS
Solve cos^(-1) (cos x) gt sin^(-1) (sin ...

Solve `cos^(-1) (cos x) gt sin^(-1) (sin x), x in [0, 2pi]`

Text Solution

AI Generated Solution

To solve the inequality \( \cos^{-1}(\cos x) > \sin^{-1}(\sin x) \) for \( x \) in the interval \( [0, 2\pi] \), we can follow these steps: ### Step 1: Understand the functions involved The functions \( \cos^{-1}(\cos x) \) and \( \sin^{-1}(\sin x) \) have specific behaviors based on the values of \( x \). ### Step 2: Determine the ranges of the functions - The function \( \cos^{-1}(\cos x) \) returns \( x \) if \( x \) is in the range \( [0, \pi] \) and returns \( 2\pi - x \) if \( x \) is in the range \( (\pi, 2\pi] \). - The function \( \sin^{-1}(\sin x) \) returns \( x \) if \( x \) is in the range \( [-\frac{\pi}{2}, \frac{\pi}{2}] \) and returns \( \pi - x \) if \( x \) is in the range \( (\frac{\pi}{2}, \frac{3\pi}{2}] \) and \( 2\pi - x \) if \( x \) is in the range \( (\frac{3\pi}{2}, \frac{5\pi}{2}] \). ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.1|12 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.2|6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

Solve cos^(-1)(cosx)>sin^(-1)(sinx),x in [0,2pi]

Solve sin^(-1) (sin 6x) = x, x in [0,pi]

If cos^(-1)x gt sin^(-1) x , then

Solve 2 cos^(-1) x + sin^(-1) x = (2pi)/(3)

Solve sin^(-1) x- cos^(-1) x = sin^(-1) (3x -2)

solve sin^(-1) (sin 5) gt x^(2) - 4x

Solve : cos^(-1) (sin cos^(-1)x ) =(pi)/(6) .

Solve sin^(-1)x-cos^(-1)x=sin^(-1)(3x-2)

Solve sin^(-1)x-cos^(-1)x=sin^(-1)(3x-2)

Solve : sin^(-1)x + sin^(-1) 2x = (pi)/(3)

CENGAGE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Illustration
  1. Find the value of x for which f(x) = 2 sin^(-1) sqrt(1 - x) + sin^(-1)...

    Text Solution

    |

  2. Find the principal value of the following (i) cos^(-1) (cos 3) (ii) ...

    Text Solution

    |

  3. Solve cos^(-1) (cos x) gt sin^(-1) (sin x), x in [0, 2pi]

    Text Solution

    |

  4. Find the principal values of the following (i) tan^(-1) (tan. (2pi)/...

    Text Solution

    |

  5. Find the number of solution of 2 tan^(-1) (tan x) = 6 - x

    Text Solution

    |

  6. Write tan^(-1) x, x gt 0 in the form of other inverse trigonometric fu...

    Text Solution

    |

  7. Find tan^(-1). (x)/(sqrt(a^(2) - x^(2))) in terms of sin^(-1), where x...

    Text Solution

    |

  8. Prove that sin (cot^(-1) (tan (cos^(-1) x))) = x, x gt 0

    Text Solution

    |

  9. If x<0, then prove that cos^(-1)x=pi-sin^(-1)sqrt(1-x^2)

    Text Solution

    |

  10. Prove that cos^(-1) {sqrt((1 + x)/(2))} = (cos^(-1) x)/(2) , -1 lt x l...

    Text Solution

    |

  11. Prove that tan^(-1) {(x)/(a + sqrt(a^(2) - x^(2)))} = (1)/(2) sin^(-1)...

    Text Solution

    |

  12. Prove that sin^(-1) {(sqrt(1 + x) + sqrt(1 - x))/(2)} = (pi)/(4) + (co...

    Text Solution

    |

  13. Prove that cos^(-1) ((1 - x^(2n))/(1 + x^(2n))) = 2 tan^(-1) x^(n), 0 ...

    Text Solution

    |

  14. If x in [-1, 0], then find the value of cos^(-1) (2x^(2) - 1) - 2 sin^...

    Text Solution

    |

  15. If (1)/(sqrt2) lt x lt 1, then prove that cos^(-1) x + cos^(-1) ((x + ...

    Text Solution

    |

  16. Find the value of sin^(-1) (sin 5) + cos^(-1) (cos 10) + tan^(-1) {tan...

    Text Solution

    |

  17. Find the minimum value of the function f(x) = (pi^(2))/(16 cot^(-1) (-...

    Text Solution

    |

  18. Find the range of y = (cot^(-1) x) (cot^(-1) (-x))

    Text Solution

    |

  19. The value of 2 tan^(-1) (cosec tan^(-1) x - tan cot^(-1) x) is equal t...

    Text Solution

    |

  20. Prove that cos (tan^(-1) (sin (cot^(-1) x))) = sqrt((x^(2) + 1)/(x^(2)...

    Text Solution

    |