Home
Class 12
MATHS
If the roots of the equation x^(3) -10 x...

If the roots of the equation `x^(3) -10 x + 11 = 0` are u, v, and w, then the value of `3 cosec^(2) (tan^(-1) u + tan^(-1) v + tan^(-1 w)` is ____

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x^3 - 10x + 11 = 0 \) and find the value of \( 3 \csc^2(\tan^{-1} u + \tan^{-1} v + \tan^{-1} w) \), where \( u, v, w \) are the roots of the equation, we can follow these steps: ### Step 1: Identify the coefficients The given polynomial is \( x^3 - 10x + 11 = 0 \). We can identify the coefficients: - \( a = 1 \) - \( b = 0 \) - \( c = -10 \) - \( d = 11 \) ### Step 2: Use Vieta's formulas From Vieta's formulas, we know: 1. \( u + v + w = -\frac{b}{a} = -\frac{0}{1} = 0 \) 2. \( uv + vw + wu = \frac{c}{a} = \frac{-10}{1} = -10 \) 3. \( uvw = -\frac{d}{a} = -\frac{11}{1} = -11 \) ### Step 3: Set up the angles Let: - \( \tan^{-1} u = \alpha \) - \( \tan^{-1} v = \beta \) - \( \tan^{-1} w = \gamma \) Thus, we need to find \( \tan(\alpha + \beta + \gamma) \). ### Step 4: Use the formula for tangent of sum The formula for the tangent of the sum of three angles is: \[ \tan(\alpha + \beta + \gamma) = \frac{\tan \alpha + \tan \beta + \tan \gamma - \tan \alpha \tan \beta \tan \gamma}{1 - (\tan \alpha \tan \beta + \tan \beta \tan \gamma + \tan \gamma \tan \alpha)} \] Substituting \( \tan \alpha = u \), \( \tan \beta = v \), \( \tan \gamma = w \): \[ \tan(\alpha + \beta + \gamma) = \frac{u + v + w - uvw}{1 - (uv + vw + wu)} \] ### Step 5: Substitute the values from Vieta's Using the values obtained from Vieta's: - \( u + v + w = 0 \) - \( uv + vw + wu = -10 \) - \( uvw = -11 \) We substitute these into the formula: \[ \tan(\alpha + \beta + \gamma) = \frac{0 - (-11)}{1 - (-10)} = \frac{11}{1 + 10} = \frac{11}{11} = 1 \] ### Step 6: Find \( \alpha + \beta + \gamma \) Since \( \tan(\alpha + \beta + \gamma) = 1 \), we have: \[ \alpha + \beta + \gamma = \tan^{-1}(1) = \frac{\pi}{4} \] ### Step 7: Calculate \( 3 \csc^2(\alpha + \beta + \gamma) \) Now, we need to calculate \( 3 \csc^2\left(\frac{\pi}{4}\right) \): \[ \csc\left(\frac{\pi}{4}\right) = \frac{1}{\sin\left(\frac{\pi}{4}\right)} = \frac{1}{\frac{\sqrt{2}}{2}} = \sqrt{2} \] Thus, \[ \csc^2\left(\frac{\pi}{4}\right) = (\sqrt{2})^2 = 2 \] Therefore, \[ 3 \csc^2\left(\frac{\pi}{4}\right) = 3 \times 2 = 6 \] ### Final Answer The value of \( 3 \csc^2(\tan^{-1} u + \tan^{-1} v + \tan^{-1} w) \) is \( \boxed{6} \).

To solve the equation \( x^3 - 10x + 11 = 0 \) and find the value of \( 3 \csc^2(\tan^{-1} u + \tan^{-1} v + \tan^{-1} w) \), where \( u, v, w \) are the roots of the equation, we can follow these steps: ### Step 1: Identify the coefficients The given polynomial is \( x^3 - 10x + 11 = 0 \). We can identify the coefficients: - \( a = 1 \) - \( b = 0 \) - \( c = -10 \) - \( d = 11 \) ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (JEE MAIN)|2 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (JEE Advanced)|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix match type|8 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

Prove that : 2 tan^(-1) (cosec tan^(-1) x - tan cot^(-1) x) = tan^(-1) x

The value of tan^(-1)1+tan^(-1)2+tan^(-1)3 is

2 tan^(-1) (cos x) = tan^(-1) (2 cosec x)

Let alpha, beta are the roots of the equation x^(2)+7x+k(k-3)=0 , where k in (0, 3) and k is a constant. Then the value of tan^(-1)alpha+tan^(-1)beta+"tan"^(-1)(1)/(alpha)+"tan"^(-1)(1)/(beta) is :

Prove that tan (2 tan^(-1) x ) = 2 tan (tan^(-1) x + tan^(-1) x^(3)) .

If r,s,t are the roots of the equation x(x-2)(3x-7)=2 ,then the value of tan^(-1)(r)+tan^(-1)(s)+tan^(-1)(t) is

Value of "tan" (1)/(3) (tan^(-1)x + "tan"^(-1) (1)/(x))

The value of x that satisfies tan^(-1)(tan -3)=tan^(2)x is

The value of cot(cosec^(-1)(5)/(3)+tan^(-1)""(2)/(3)) is

The value of cot(cosec^(-1)(5)/(3)+tan^(-1)""(2)/(3)) is

CENGAGE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Numerical value type
  1. The solution set of inequality (cot^(-1)x)(tan^(-1)x)+(2-pi/2),cot^(-1...

    Text Solution

    |

  2. If x=sin^(-1)(a^6+1)+cos^(-1)(a^4+1)-tan^(-1)(a^2+1),a in R , then th...

    Text Solution

    |

  3. If the roots of the equation x^(3) -10 x + 11 = 0 are u, v, and w, the...

    Text Solution

    |

  4. The number of values of x for which sin^(-1)(x^2-(x^4)/3+(x^6)/9)+cos^...

    Text Solution

    |

  5. If the domain of the function f(x) = sqrt(3 cos^(-1) (4x) - pi) is [a,...

    Text Solution

    |

  6. If 0<cos^-1(x) <1 and 1+"sin"(cos^(-1)x)+sin^2(cos^(-1)x)+sin^3(cos^(-...

    Text Solution

    |

  7. If tan^(-1)(x+3/x)-tan^(-1)(x-3/x)=tan^(-1)6/x , then the value of x^4...

    Text Solution

    |

  8. If range of function f(x)=sin^(-1)x+2tan^(-1)x+x^2+4x+1 is [p , q], th...

    Text Solution

    |

  9. If cos^(-1)(x)+cos^(-1)(y)+cos^(-1)(z)=pi(sec^2(u)+sec^4(v)+sec^6(w)),...

    Text Solution

    |

  10. If the area enclosed by the curves f(x) = cos^(-1) (cos x) and g(x) = ...

    Text Solution

    |

  11. Absolute value of sum of all integers in the domain of f(x)=cot^(-1)sq...

    Text Solution

    |

  12. The least value of (1+sec^(-1)x)(1+c os^(-1)x) is

    Text Solution

    |

  13. Let cos^(-1)(x)+cos^(-1)(2x)+cos^(-1)(3x)b epidot If x satisfies the e...

    Text Solution

    |

  14. The number of integral values of x satisfying the equation tan^(-1) (3...

    Text Solution

    |

  15. Number of solutions of equation sin(cos^(-1)(tan(sec^(-1)x)))=sqrt(1+x...

    Text Solution

    |

  16. If the equation sin^(-1)(x^2+x+1)+cos^(-1)(lambda x+1)=pi/2 has exactl...

    Text Solution

    |

  17. sin{2(sin^(-1)(sqrt(5))/3-cos^(-1)(sqrt(5))/3)} is equal to (ksqrt(5)...

    Text Solution

    |

  18. The number of solutions of "cos"(2sin^(-1)("cot"(tan^(-1)(sec(6cos e c...

    Text Solution

    |