Home
Class 12
MATHS
If the domain of the function f(x) = sqr...

If the domain of the function `f(x) = sqrt(3 cos^(-1) (4x) - pi)` is `[a, b]`, then the value of `(4a + 64b)` is ___

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \( f(x) = \sqrt{3 \cos^{-1}(4x) - \pi} \) and subsequently calculate \( 4a + 64b \) where the domain is \([a, b]\), we will follow these steps: ### Step 1: Determine the condition for the square root to be defined The expression inside the square root must be non-negative: \[ 3 \cos^{-1}(4x) - \pi \geq 0 \] This simplifies to: \[ 3 \cos^{-1}(4x) \geq \pi \] Dividing both sides by 3, we get: \[ \cos^{-1}(4x) \geq \frac{\pi}{3} \] ### Step 2: Solve the inequality involving the inverse cosine The inverse cosine function gives values in the range \([0, \pi]\). The inequality \(\cos^{-1}(4x) \geq \frac{\pi}{3}\) implies: \[ 4x \leq \cos\left(\frac{\pi}{3}\right) \] Since \(\cos\left(\frac{\pi}{3}\right) = \frac{1}{2}\), we have: \[ 4x \leq \frac{1}{2} \] Dividing by 4: \[ x \leq \frac{1}{8} \] ### Step 3: Determine the range of \(4x\) for the inverse cosine function The argument of the \(\cos^{-1}\) function, \(4x\), must lie within the domain of \(\cos^{-1}\), which is \([-1, 1]\): \[ -1 \leq 4x \leq 1 \] Dividing the entire inequality by 4 gives: \[ -\frac{1}{4} \leq x \leq \frac{1}{4} \] ### Step 4: Combine the inequalities to find the domain From Step 2, we have \(x \leq \frac{1}{8}\) and from Step 3, we have \(-\frac{1}{4} \leq x \leq \frac{1}{4}\). The domain of \(f(x)\) is the intersection of these two conditions: \[ -\frac{1}{4} \leq x \leq \frac{1}{8} \] Thus, the domain is \([a, b] = \left[-\frac{1}{4}, \frac{1}{8}\right]\). ### Step 5: Calculate \(4a + 64b\) Here, \(a = -\frac{1}{4}\) and \(b = \frac{1}{8}\): \[ 4a = 4 \left(-\frac{1}{4}\right) = -1 \] \[ 64b = 64 \left(\frac{1}{8}\right) = 8 \] Now, we can calculate: \[ 4a + 64b = -1 + 8 = 7 \] ### Final Answer Thus, the value of \(4a + 64b\) is \( \boxed{7} \).

To find the domain of the function \( f(x) = \sqrt{3 \cos^{-1}(4x) - \pi} \) and subsequently calculate \( 4a + 64b \) where the domain is \([a, b]\), we will follow these steps: ### Step 1: Determine the condition for the square root to be defined The expression inside the square root must be non-negative: \[ 3 \cos^{-1}(4x) - \pi \geq 0 \] This simplifies to: ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (JEE MAIN)|2 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (JEE Advanced)|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix match type|8 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

The domain of the function f(x)=4-sqrt(x^(2)-9) is

The domain of the function f(x)=sqrt(cos^(- 1)((1-|x|)/2)) is

The domain of the function f(x)=4sqrt(cos^(-1)((1-|x|)/(2))) is

The domain of the function f(x)=cos^(-1)((2-absx)/4) is

The domain of the function f(x) = sqrt(log_(10) cos (2pi x)) is

The domain of the function f(x) = (1)/(sqrt(4 + 3 sin x)) is :

The domain of the function f(x)=sqrt(x-sqrt(1-x^2)) is

What is the domain of the function f(x)=4-sqrt(3x^(3)-7) ?

Find the domain of the function: f(x)=sqrt(sec^(-1)((2-|x|)/4))

The domain of the function f(x)= sqrt(sin^(-1)x-(pi)/(4))+log(1-x) is :

CENGAGE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Numerical value type
  1. The solution set of inequality (cot^(-1)x)(tan^(-1)x)+(2-pi/2),cot^(-1...

    Text Solution

    |

  2. If x=sin^(-1)(a^6+1)+cos^(-1)(a^4+1)-tan^(-1)(a^2+1),a in R , then th...

    Text Solution

    |

  3. If the roots of the equation x^(3) -10 x + 11 = 0 are u, v, and w, the...

    Text Solution

    |

  4. The number of values of x for which sin^(-1)(x^2-(x^4)/3+(x^6)/9)+cos^...

    Text Solution

    |

  5. If the domain of the function f(x) = sqrt(3 cos^(-1) (4x) - pi) is [a,...

    Text Solution

    |

  6. If 0<cos^-1(x) <1 and 1+"sin"(cos^(-1)x)+sin^2(cos^(-1)x)+sin^3(cos^(-...

    Text Solution

    |

  7. If tan^(-1)(x+3/x)-tan^(-1)(x-3/x)=tan^(-1)6/x , then the value of x^4...

    Text Solution

    |

  8. If range of function f(x)=sin^(-1)x+2tan^(-1)x+x^2+4x+1 is [p , q], th...

    Text Solution

    |

  9. If cos^(-1)(x)+cos^(-1)(y)+cos^(-1)(z)=pi(sec^2(u)+sec^4(v)+sec^6(w)),...

    Text Solution

    |

  10. If the area enclosed by the curves f(x) = cos^(-1) (cos x) and g(x) = ...

    Text Solution

    |

  11. Absolute value of sum of all integers in the domain of f(x)=cot^(-1)sq...

    Text Solution

    |

  12. The least value of (1+sec^(-1)x)(1+c os^(-1)x) is

    Text Solution

    |

  13. Let cos^(-1)(x)+cos^(-1)(2x)+cos^(-1)(3x)b epidot If x satisfies the e...

    Text Solution

    |

  14. The number of integral values of x satisfying the equation tan^(-1) (3...

    Text Solution

    |

  15. Number of solutions of equation sin(cos^(-1)(tan(sec^(-1)x)))=sqrt(1+x...

    Text Solution

    |

  16. If the equation sin^(-1)(x^2+x+1)+cos^(-1)(lambda x+1)=pi/2 has exactl...

    Text Solution

    |

  17. sin{2(sin^(-1)(sqrt(5))/3-cos^(-1)(sqrt(5))/3)} is equal to (ksqrt(5)...

    Text Solution

    |

  18. The number of solutions of "cos"(2sin^(-1)("cot"(tan^(-1)(sec(6cos e c...

    Text Solution

    |