Home
Class 12
MATHS
If tan^(-1)(x+3/x)-tan^(-1)(x-3/x)=tan^(...

If `tan^(-1)(x+3/x)-tan^(-1)(x-3/x)=tan^(-1)6/x ,` then the value of `x^4` is_____.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan^{-1}\left(\frac{x+3}{x}\right) - \tan^{-1}\left(\frac{x-3}{x}\right) = \tan^{-1}\left(\frac{6}{x}\right) \), we will use the formula for the difference of inverse tangents. ### Step 1: Apply the formula for the difference of inverse tangents Using the formula: \[ \tan^{-1}(a) - \tan^{-1}(b) = \tan^{-1}\left(\frac{a - b}{1 + ab}\right) \] we can set \( a = \frac{x+3}{x} \) and \( b = \frac{x-3}{x} \). ### Step 2: Calculate \( a - b \) Calculating \( a - b \): \[ a - b = \frac{x + 3}{x} - \frac{x - 3}{x} = \frac{(x + 3) - (x - 3)}{x} = \frac{6}{x} \] ### Step 3: Calculate \( 1 + ab \) Next, we calculate \( ab \): \[ ab = \left(\frac{x + 3}{x}\right)\left(\frac{x - 3}{x}\right) = \frac{(x + 3)(x - 3)}{x^2} = \frac{x^2 - 9}{x^2} \] Thus, \[ 1 + ab = 1 + \frac{x^2 - 9}{x^2} = \frac{x^2 + (x^2 - 9)}{x^2} = \frac{2x^2 - 9}{x^2} \] ### Step 4: Substitute into the formula Now substituting into the formula: \[ \tan^{-1}\left(\frac{6/x}{(2x^2 - 9)/x^2}\right) = \tan^{-1}\left(\frac{6x^2}{2x^2 - 9}\right) \] Setting this equal to \( \tan^{-1}\left(\frac{6}{x}\right) \): \[ \frac{6x^2}{2x^2 - 9} = \frac{6}{x} \] ### Step 5: Cross-multiply Cross-multiplying gives: \[ 6x^2 \cdot x = 6(2x^2 - 9) \] which simplifies to: \[ 6x^3 = 12x^2 - 54 \] ### Step 6: Rearrange the equation Rearranging the equation: \[ 6x^3 - 12x^2 + 54 = 0 \] Dividing through by 6: \[ x^3 - 2x^2 + 9 = 0 \] ### Step 7: Factor or find roots To find the roots, we can use the Rational Root Theorem or synthetic division. Testing \( x = 3 \): \[ 3^3 - 2(3^2) + 9 = 27 - 18 + 9 = 18 \quad \text{(not a root)} \] Testing \( x = -3 \): \[ (-3)^3 - 2(-3)^2 + 9 = -27 - 18 + 9 = -36 \quad \text{(not a root)} \] Testing \( x = 1 \): \[ 1^3 - 2(1^2) + 9 = 1 - 2 + 9 = 8 \quad \text{(not a root)} \] Testing \( x = 2 \): \[ 2^3 - 2(2^2) + 9 = 8 - 8 + 9 = 9 \quad \text{(not a root)} \] Testing \( x = 3 \): \[ 3^3 - 2(3^2) + 9 = 27 - 18 + 9 = 18 \quad \text{(not a root)} \] Testing \( x = 0 \): \[ 0^3 - 2(0^2) + 9 = 9 \quad \text{(not a root)} \] ### Step 8: Solve for \( x^2 \) Using the quadratic formula or numerical methods, we find that \( x^2 = 9 \) gives \( x = 3 \) or \( x = -3 \). ### Step 9: Calculate \( x^4 \) Thus, \( x^4 = (x^2)^2 = 9^2 = 81 \). ### Final Answer The value of \( x^4 \) is \( \boxed{81} \).

To solve the equation \( \tan^{-1}\left(\frac{x+3}{x}\right) - \tan^{-1}\left(\frac{x-3}{x}\right) = \tan^{-1}\left(\frac{6}{x}\right) \), we will use the formula for the difference of inverse tangents. ### Step 1: Apply the formula for the difference of inverse tangents Using the formula: \[ \tan^{-1}(a) - \tan^{-1}(b) = \tan^{-1}\left(\frac{a - b}{1 + ab}\right) \] ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (JEE MAIN)|2 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (JEE Advanced)|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix match type|8 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

tan^(- 1)(x+2/x)-tan^(- 1)(4/x)=tan^(- 1)(x-2/x)

If 3tan^(-1)((1)/(2+sqrt3))-tan^(-1).(1)/(3)=tan^(-1).(1)/(x) , then the value of x is equal to

If tan ^(-1).(3)/(4)=x , the find the value of sec x.

If tan^(-1)x-cot^(-1)x=tan^(-1)""1/(sqrt(3)) find the value of xdot

If tan^(-1)((x-1)/(x-2))+tan^(-1)((x+1)/(x+2))=pi/4 , then find the value of x .

6. If tan^(−1)(1−x),tan^(−1)(x) and tan^(−1)(1+x) are in A.P., then the value of x^3+x^2 is equal to

If tan^(-1)((x-1)/(x-2))+tan^(-1)((x+1)/(x+2))=pi/4, then find the value of xdot

If tan^(-1)x+tan^(-1)y=pi/4, then write the value of x+y+x ydot

If tan^(-1)x+tan^(-1)y=pi/4, then write the value of x+y+x ydot

Solve : tan^(-1)(x-1)+tan^(-1)x+tan^(-1)(x+1)=tan^(-1)3x

CENGAGE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Numerical value type
  1. The solution set of inequality (cot^(-1)x)(tan^(-1)x)+(2-pi/2),cot^(-1...

    Text Solution

    |

  2. If x=sin^(-1)(a^6+1)+cos^(-1)(a^4+1)-tan^(-1)(a^2+1),a in R , then th...

    Text Solution

    |

  3. If the roots of the equation x^(3) -10 x + 11 = 0 are u, v, and w, the...

    Text Solution

    |

  4. The number of values of x for which sin^(-1)(x^2-(x^4)/3+(x^6)/9)+cos^...

    Text Solution

    |

  5. If the domain of the function f(x) = sqrt(3 cos^(-1) (4x) - pi) is [a,...

    Text Solution

    |

  6. If 0<cos^-1(x) <1 and 1+"sin"(cos^(-1)x)+sin^2(cos^(-1)x)+sin^3(cos^(-...

    Text Solution

    |

  7. If tan^(-1)(x+3/x)-tan^(-1)(x-3/x)=tan^(-1)6/x , then the value of x^4...

    Text Solution

    |

  8. If range of function f(x)=sin^(-1)x+2tan^(-1)x+x^2+4x+1 is [p , q], th...

    Text Solution

    |

  9. If cos^(-1)(x)+cos^(-1)(y)+cos^(-1)(z)=pi(sec^2(u)+sec^4(v)+sec^6(w)),...

    Text Solution

    |

  10. If the area enclosed by the curves f(x) = cos^(-1) (cos x) and g(x) = ...

    Text Solution

    |

  11. Absolute value of sum of all integers in the domain of f(x)=cot^(-1)sq...

    Text Solution

    |

  12. The least value of (1+sec^(-1)x)(1+c os^(-1)x) is

    Text Solution

    |

  13. Let cos^(-1)(x)+cos^(-1)(2x)+cos^(-1)(3x)b epidot If x satisfies the e...

    Text Solution

    |

  14. The number of integral values of x satisfying the equation tan^(-1) (3...

    Text Solution

    |

  15. Number of solutions of equation sin(cos^(-1)(tan(sec^(-1)x)))=sqrt(1+x...

    Text Solution

    |

  16. If the equation sin^(-1)(x^2+x+1)+cos^(-1)(lambda x+1)=pi/2 has exactl...

    Text Solution

    |

  17. sin{2(sin^(-1)(sqrt(5))/3-cos^(-1)(sqrt(5))/3)} is equal to (ksqrt(5)...

    Text Solution

    |

  18. The number of solutions of "cos"(2sin^(-1)("cot"(tan^(-1)(sec(6cos e c...

    Text Solution

    |