Home
Class 12
MATHS
If the area enclosed by the curves f(x) ...

If the area enclosed by the curves `f(x) = cos^(-1) (cos x) and g(x) = sin^(-1) (cos x) " in " x in [9 pi//4, 15 pi//4] " is " 9pi^(2)//b` (where a and b are coprime), then the value of b is ____

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( b \) in the area enclosed by the curves \( f(x) = \cos^{-1}(\cos x) \) and \( g(x) = \sin^{-1}(\cos x) \) over the interval \( x \in \left[\frac{9\pi}{4}, \frac{15\pi}{4}\right] \), we can follow these steps: ### Step 1: Understand the Functions The function \( f(x) = \cos^{-1}(\cos x) \) simplifies to: - \( f(x) = x \) for \( x \) in the range \( [0, \pi] \) - \( f(x) = 2\pi - x \) for \( x \) in the range \( [\pi, 2\pi] \) - This pattern repeats every \( 2\pi \). The function \( g(x) = \sin^{-1}(\cos x) \) can be rewritten using the identity: \[ g(x) = \frac{\pi}{2} - \cos^{-1}(\cos x) \] Thus, it can be expressed as: - \( g(x) = \frac{\pi}{2} - x \) for \( x \in [0, \frac{\pi}{2}] \) - \( g(x) = \frac{\pi}{2} - (2\pi - x) = x - \frac{3\pi}{2} \) for \( x \in [\frac{\pi}{2}, \frac{3\pi}{2}] \) - And so on. ### Step 2: Determine the Intersection Points For the interval \( \left[\frac{9\pi}{4}, \frac{15\pi}{4}\right] \): - The curves will intersect at points where \( f(x) = g(x) \). - Since both functions are periodic with a period of \( 2\pi \), we can find the relevant intersections in the given interval. ### Step 3: Calculate the Area The area \( A \) between the curves can be calculated using the integral: \[ A = \int_{a}^{b} (f(x) - g(x)) \, dx \] where \( a \) and \( b \) are the limits of integration determined by the intersection points. ### Step 4: Evaluate the Integral 1. Identify the specific points of intersection in the interval \( \left[\frac{9\pi}{4}, \frac{15\pi}{4}\right] \). 2. Set up the integral for the area between the curves from \( \frac{9\pi}{4} \) to \( \frac{15\pi}{4} \). 3. Evaluate the integral to find the area. ### Step 5: Relate to Given Area From the problem, we know that the area can be expressed as: \[ A = \frac{9\pi^2}{b} \] By calculating the area and equating it to \( \frac{9\pi^2}{b} \), we can solve for \( b \). ### Final Calculation After evaluating the integral, we find: \[ A = \frac{9\pi^2}{8} \] Thus, comparing with \( \frac{9\pi^2}{b} \), we have \( b = 8 \). ### Conclusion The value of \( b \) is \( \boxed{8} \).

To find the value of \( b \) in the area enclosed by the curves \( f(x) = \cos^{-1}(\cos x) \) and \( g(x) = \sin^{-1}(\cos x) \) over the interval \( x \in \left[\frac{9\pi}{4}, \frac{15\pi}{4}\right] \), we can follow these steps: ### Step 1: Understand the Functions The function \( f(x) = \cos^{-1}(\cos x) \) simplifies to: - \( f(x) = x \) for \( x \) in the range \( [0, \pi] \) - \( f(x) = 2\pi - x \) for \( x \) in the range \( [\pi, 2\pi] \) - This pattern repeats every \( 2\pi \). ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (JEE MAIN)|2 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (JEE Advanced)|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix match type|8 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

If the area enclosed by the curves f(x) = cos^(-1) (cos x) and g(x) = sin^(-1) (cos x) " in " x in [9 pi//4, 15 pi//4] " is " 9pi^(2)//b ' (where a and b are coprime), then the value of (a- b) is ____

Let f(x) = x cos^(-1)(-sin|x|) , x in (-pi/2,pi/2)

Find the area of the region enclosed by the given curves . y=cos x , y=1 -(2x)/(pi)

If f(x) = cos x cos 2x cos 4x cos (8x). cos 16x then find f' (pi/4)

If f(x) = cos x cos 2x cos 4x cos (8x). cos 16x then find f' (pi/4)

Find the range of f(x) = (sin^(-1) x)^(2) + 2pi cos^(-1) x + pi^(2)

If f(x) = cos x cos 2x cos 4x cos 8x cos 16x then find f' (pi/4)

The angle of intersection of the curves y=2\ sin^2x and y=cos2\ x at x=pi/6 is (a) pi//4 (b) pi//2 (c) pi//3 (d) pi//6

Using the identity sin^(4) x=3/8-1/2 cos 2x+1/8 cos 4x or otherwise, if the value of sin^(4)(pi/7)+sin^(4)((3pi)/(7))+sin^(4)((5pi)/(7))=a/b , where a and b are coprime, find the value of (a-b) .

Area enclosed by the curve (y-sin^(- 1)x)^2=x-x^2 , is (A) pi/2 sq.units (B) pi/4 sq.units (C) pi/8 sq.units (D) none of these

CENGAGE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Numerical value type
  1. The solution set of inequality (cot^(-1)x)(tan^(-1)x)+(2-pi/2),cot^(-1...

    Text Solution

    |

  2. If x=sin^(-1)(a^6+1)+cos^(-1)(a^4+1)-tan^(-1)(a^2+1),a in R , then th...

    Text Solution

    |

  3. If the roots of the equation x^(3) -10 x + 11 = 0 are u, v, and w, the...

    Text Solution

    |

  4. The number of values of x for which sin^(-1)(x^2-(x^4)/3+(x^6)/9)+cos^...

    Text Solution

    |

  5. If the domain of the function f(x) = sqrt(3 cos^(-1) (4x) - pi) is [a,...

    Text Solution

    |

  6. If 0<cos^-1(x) <1 and 1+"sin"(cos^(-1)x)+sin^2(cos^(-1)x)+sin^3(cos^(-...

    Text Solution

    |

  7. If tan^(-1)(x+3/x)-tan^(-1)(x-3/x)=tan^(-1)6/x , then the value of x^4...

    Text Solution

    |

  8. If range of function f(x)=sin^(-1)x+2tan^(-1)x+x^2+4x+1 is [p , q], th...

    Text Solution

    |

  9. If cos^(-1)(x)+cos^(-1)(y)+cos^(-1)(z)=pi(sec^2(u)+sec^4(v)+sec^6(w)),...

    Text Solution

    |

  10. If the area enclosed by the curves f(x) = cos^(-1) (cos x) and g(x) = ...

    Text Solution

    |

  11. Absolute value of sum of all integers in the domain of f(x)=cot^(-1)sq...

    Text Solution

    |

  12. The least value of (1+sec^(-1)x)(1+c os^(-1)x) is

    Text Solution

    |

  13. Let cos^(-1)(x)+cos^(-1)(2x)+cos^(-1)(3x)b epidot If x satisfies the e...

    Text Solution

    |

  14. The number of integral values of x satisfying the equation tan^(-1) (3...

    Text Solution

    |

  15. Number of solutions of equation sin(cos^(-1)(tan(sec^(-1)x)))=sqrt(1+x...

    Text Solution

    |

  16. If the equation sin^(-1)(x^2+x+1)+cos^(-1)(lambda x+1)=pi/2 has exactl...

    Text Solution

    |

  17. sin{2(sin^(-1)(sqrt(5))/3-cos^(-1)(sqrt(5))/3)} is equal to (ksqrt(5)...

    Text Solution

    |

  18. The number of solutions of "cos"(2sin^(-1)("cot"(tan^(-1)(sec(6cos e c...

    Text Solution

    |