Home
Class 12
MATHS
Absolute value of sum of all integers in...

Absolute value of sum of all integers in the domain of `f(x)=cot^(-1)sqrt((x+3)x)+cos^(-1)sqrt(x^2+3x+1)` is_______

Text Solution

AI Generated Solution

The correct Answer is:
To find the absolute value of the sum of all integers in the domain of the function \( f(x) = \cot^{-1}(\sqrt{(x+3)x}) + \cos^{-1}(\sqrt{x^2 + 3x + 1}) \), we need to determine the domain of the function first. ### Step 1: Determine the domain of \( \cot^{-1}(\sqrt{(x+3)x}) \) The expression inside the cotangent inverse function, \( \sqrt{(x+3)x} \), must be non-negative. Therefore, we need: \[ (x+3)x \geq 0 \] This inequality holds when either both factors are non-negative or both are non-positive. 1. **Both factors non-negative:** - \( x + 3 \geq 0 \) implies \( x \geq -3 \) - \( x \geq 0 \) The intersection gives us \( x \geq 0 \). 2. **Both factors non-positive:** - \( x + 3 \leq 0 \) implies \( x \leq -3 \) - \( x \leq 0 \) The intersection gives us \( x \leq -3 \). Thus, the solution to \( (x+3)x \geq 0 \) is: \[ x \in (-\infty, -3] \cup [0, \infty) \] ### Step 2: Determine the domain of \( \cos^{-1}(\sqrt{x^2 + 3x + 1}) \) The expression inside the cosine inverse function, \( \sqrt{x^2 + 3x + 1} \), must lie between 0 and 1, inclusive: \[ 0 \leq \sqrt{x^2 + 3x + 1} \leq 1 \] Squaring the inequality gives: \[ 0 \leq x^2 + 3x + 1 \leq 1 \] 1. **For \( x^2 + 3x + 1 \geq 0 \):** - The roots of \( x^2 + 3x + 1 = 0 \) can be found using the quadratic formula: \[ x = \frac{-3 \pm \sqrt{3^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1} = \frac{-3 \pm \sqrt{5}}{2} \] The quadratic opens upwards, so it is non-negative outside the interval formed by its roots. 2. **For \( x^2 + 3x + 1 \leq 1 \):** - Rearranging gives: \[ x^2 + 3x \leq 0 \] Factoring gives: \[ x(x + 3) \leq 0 \] This holds for \( x \in [-3, 0] \). ### Step 3: Combine the domains From the two parts, we have: - From \( \cot^{-1}(\sqrt{(x+3)x}) \): \( x \in (-\infty, -3] \cup [0, \infty) \) - From \( \cos^{-1}(\sqrt{x^2 + 3x + 1}) \): \( x \in [-3, 0] \) The intersection of these two domains is: \[ x \in [-3, 0] \] ### Step 4: Find the integers in the domain The integers in the interval \( [-3, 0] \) are: \[ -3, -2, -1, 0 \] ### Step 5: Calculate the sum of these integers Calculating the sum: \[ -3 + (-2) + (-1) + 0 = -6 \] ### Step 6: Find the absolute value The absolute value of the sum is: \[ | -6 | = 6 \] Thus, the final answer is: \[ \boxed{6} \]

To find the absolute value of the sum of all integers in the domain of the function \( f(x) = \cot^{-1}(\sqrt{(x+3)x}) + \cos^{-1}(\sqrt{x^2 + 3x + 1}) \), we need to determine the domain of the function first. ### Step 1: Determine the domain of \( \cot^{-1}(\sqrt{(x+3)x}) \) The expression inside the cotangent inverse function, \( \sqrt{(x+3)x} \), must be non-negative. Therefore, we need: \[ (x+3)x \geq 0 ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (JEE MAIN)|2 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (JEE Advanced)|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix match type|8 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

The domain of f(x) = (1)/(sqrt(x - 3)) is :

Find the domain of: y=cot^(-1)(sqrt(x^(2)-1))

Find the number of integers in the domain of f (x) = (1)/(sqrt(ln cos ^(-1)x)

Find the domain of f(x) = sqrt(x-1) .

Find the domain of f(x)=sqrt((1-|x|)/(|x|-2))

Domain of f(x)=cos^(-1)x+cot^(-1)x+cosec^(-1)x is

Find the domain of f(x)=sqrt(cos^(-1)x-sin^(-1)x)

Find the domain of f(x)=sqrt(cos^(-1)x-sin^(-1)x)

Domain of f(x)=1/sqrt(x^3-3x^2+2x) is

Find the domain of f(x)=sqrt(1-sqrt(1-sqrt(1-x^2)))

CENGAGE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Numerical value type
  1. The solution set of inequality (cot^(-1)x)(tan^(-1)x)+(2-pi/2),cot^(-1...

    Text Solution

    |

  2. If x=sin^(-1)(a^6+1)+cos^(-1)(a^4+1)-tan^(-1)(a^2+1),a in R , then th...

    Text Solution

    |

  3. If the roots of the equation x^(3) -10 x + 11 = 0 are u, v, and w, the...

    Text Solution

    |

  4. The number of values of x for which sin^(-1)(x^2-(x^4)/3+(x^6)/9)+cos^...

    Text Solution

    |

  5. If the domain of the function f(x) = sqrt(3 cos^(-1) (4x) - pi) is [a,...

    Text Solution

    |

  6. If 0<cos^-1(x) <1 and 1+"sin"(cos^(-1)x)+sin^2(cos^(-1)x)+sin^3(cos^(-...

    Text Solution

    |

  7. If tan^(-1)(x+3/x)-tan^(-1)(x-3/x)=tan^(-1)6/x , then the value of x^4...

    Text Solution

    |

  8. If range of function f(x)=sin^(-1)x+2tan^(-1)x+x^2+4x+1 is [p , q], th...

    Text Solution

    |

  9. If cos^(-1)(x)+cos^(-1)(y)+cos^(-1)(z)=pi(sec^2(u)+sec^4(v)+sec^6(w)),...

    Text Solution

    |

  10. If the area enclosed by the curves f(x) = cos^(-1) (cos x) and g(x) = ...

    Text Solution

    |

  11. Absolute value of sum of all integers in the domain of f(x)=cot^(-1)sq...

    Text Solution

    |

  12. The least value of (1+sec^(-1)x)(1+c os^(-1)x) is

    Text Solution

    |

  13. Let cos^(-1)(x)+cos^(-1)(2x)+cos^(-1)(3x)b epidot If x satisfies the e...

    Text Solution

    |

  14. The number of integral values of x satisfying the equation tan^(-1) (3...

    Text Solution

    |

  15. Number of solutions of equation sin(cos^(-1)(tan(sec^(-1)x)))=sqrt(1+x...

    Text Solution

    |

  16. If the equation sin^(-1)(x^2+x+1)+cos^(-1)(lambda x+1)=pi/2 has exactl...

    Text Solution

    |

  17. sin{2(sin^(-1)(sqrt(5))/3-cos^(-1)(sqrt(5))/3)} is equal to (ksqrt(5)...

    Text Solution

    |

  18. The number of solutions of "cos"(2sin^(-1)("cot"(tan^(-1)(sec(6cos e c...

    Text Solution

    |