Home
Class 12
MATHS
Let cos^(-1)(x)+cos^(-1)(2x)+cos^(-1)(3x...

Let `cos^(-1)(x)+cos^(-1)(2x)+cos^(-1)(3x)b epidot` If `x` satisfies the equation `a x^3+b x^2+c x-c_1=0,` then the value of `(b-a-c)` is_________

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the equation given and manipulate it step by step. ### Step 1: Write down the equation We start with the equation: \[ \cos^{-1}(x) + \cos^{-1}(2x) + \cos^{-1}(3x) = \pi \] ### Step 2: Rearrange the equation From the equation, we can isolate one of the inverse cosine terms: \[ \cos^{-1}(2x) + \cos^{-1}(3x) = \pi - \cos^{-1}(x) \] Using the property of inverse cosine, we can rewrite \(\pi - \cos^{-1}(x)\) as \(\cos^{-1}(-x)\): \[ \cos^{-1}(2x) + \cos^{-1}(3x) = \cos^{-1}(-x) \] ### Step 3: Apply the formula for the sum of inverse cosines Using the formula for the sum of inverse cosines: \[ \cos^{-1}(a) + \cos^{-1}(b) = \cos^{-1}(ab - \sqrt{(1-a^2)(1-b^2)}) \] we set \(a = 2x\) and \(b = 3x\): \[ \cos^{-1}(2x) + \cos^{-1}(3x) = \cos^{-1}(2x \cdot 3x - \sqrt{(1 - (2x)^2)(1 - (3x)^2)}) \] This simplifies to: \[ \cos^{-1}(6x^2 - \sqrt{(1 - 4x^2)(1 - 9x^2)}) \] ### Step 4: Set the equation for the cosine Now we set: \[ 6x^2 - \sqrt{(1 - 4x^2)(1 - 9x^2)} = -x \] Rearranging gives: \[ \sqrt{(1 - 4x^2)(1 - 9x^2)} = 6x^2 + x \] ### Step 5: Square both sides Squaring both sides results in: \[ (1 - 4x^2)(1 - 9x^2) = (6x^2 + x)^2 \] ### Step 6: Expand both sides Expanding the left side: \[ 1 - 9x^2 - 4x^2 + 36x^4 = 1 - 13x^2 + 36x^4 \] And the right side: \[ (6x^2 + x)^2 = 36x^4 + 12x^3 + x^2 \] ### Step 7: Set the equation to zero Equating both sides gives: \[ 1 - 13x^2 + 36x^4 = 36x^4 + 12x^3 + x^2 \] This simplifies to: \[ -13x^2 - 12x^3 + 1 = 0 \] Rearranging gives: \[ 12x^3 + 14x^2 - 1 = 0 \] ### Step 8: Identify coefficients From the equation \(12x^3 + 14x^2 + 0x - 1 = 0\), we identify: - \(a = 12\) - \(b = 14\) - \(c = 0\) ### Step 9: Calculate \(b - a - c\) Now we compute: \[ b - a - c = 14 - 12 - 0 = 2 \] Thus, the final answer is: \[ \boxed{2} \]

To solve the problem, we need to analyze the equation given and manipulate it step by step. ### Step 1: Write down the equation We start with the equation: \[ \cos^{-1}(x) + \cos^{-1}(2x) + \cos^{-1}(3x) = \pi \] ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (JEE MAIN)|2 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (JEE Advanced)|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix match type|8 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

If x=1 and x=2 are solutions of equations x^3+a x^2+b x+c=0 and a+b=1, then find the value of bdot

The value of x satisfying the equation cos^(-1)3x+sin^(-1)2x=pi is

Let cos^(-1) (4x^(3) -3x) = a + b cos^(-1) x If x in [-1, -(1)/(2)) , then the value of a + b pi is

Solve the equation: cos^(-1)(a/x)-cos^(-1)(b/x)=cos^(-1)(1/b)-cos^(-1)(1/a)

Solve the equation: cos^(-1)(a/x)-cos^(-1)(b/x)=cos^(-1)(1/b) - cos^(-1)(1/a)

If x-a is a factor of x^3-3x^2a+2a^2x+b , then the value of b is (a) 0 (b) 2 (c) 1 (d) 3

Let a = cos^(-1) cos 20, b = cos^(-1) cos 30 and c = sin^(-1) sin (a + b) then If 5 sec^(-1) x + 10 sin^(-1) y = 10 (a + b + c) then the value of tan^(-1) x + cos^(-1) (y -1) is

If x satisfies the cubic equation ax^(3)+bx^(2)+cx+d=0 such that cos^(-1)(x)+cos^(-1)(2x)+cos^(-1)(3x)=pi , then find the value of (b+c)-(a+d) .

Let cos^(-1) (4x^(3) -3x) = a + b cos^(-1) x If x in ((1)/(2), 1] , then the value of lim_( y to a)b cos (y) is

Find the value of x satisfying the equation 2cos^(-1)(1-x)-3cos^(-1)x=pi

CENGAGE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Numerical value type
  1. The solution set of inequality (cot^(-1)x)(tan^(-1)x)+(2-pi/2),cot^(-1...

    Text Solution

    |

  2. If x=sin^(-1)(a^6+1)+cos^(-1)(a^4+1)-tan^(-1)(a^2+1),a in R , then th...

    Text Solution

    |

  3. If the roots of the equation x^(3) -10 x + 11 = 0 are u, v, and w, the...

    Text Solution

    |

  4. The number of values of x for which sin^(-1)(x^2-(x^4)/3+(x^6)/9)+cos^...

    Text Solution

    |

  5. If the domain of the function f(x) = sqrt(3 cos^(-1) (4x) - pi) is [a,...

    Text Solution

    |

  6. If 0<cos^-1(x) <1 and 1+"sin"(cos^(-1)x)+sin^2(cos^(-1)x)+sin^3(cos^(-...

    Text Solution

    |

  7. If tan^(-1)(x+3/x)-tan^(-1)(x-3/x)=tan^(-1)6/x , then the value of x^4...

    Text Solution

    |

  8. If range of function f(x)=sin^(-1)x+2tan^(-1)x+x^2+4x+1 is [p , q], th...

    Text Solution

    |

  9. If cos^(-1)(x)+cos^(-1)(y)+cos^(-1)(z)=pi(sec^2(u)+sec^4(v)+sec^6(w)),...

    Text Solution

    |

  10. If the area enclosed by the curves f(x) = cos^(-1) (cos x) and g(x) = ...

    Text Solution

    |

  11. Absolute value of sum of all integers in the domain of f(x)=cot^(-1)sq...

    Text Solution

    |

  12. The least value of (1+sec^(-1)x)(1+c os^(-1)x) is

    Text Solution

    |

  13. Let cos^(-1)(x)+cos^(-1)(2x)+cos^(-1)(3x)b epidot If x satisfies the e...

    Text Solution

    |

  14. The number of integral values of x satisfying the equation tan^(-1) (3...

    Text Solution

    |

  15. Number of solutions of equation sin(cos^(-1)(tan(sec^(-1)x)))=sqrt(1+x...

    Text Solution

    |

  16. If the equation sin^(-1)(x^2+x+1)+cos^(-1)(lambda x+1)=pi/2 has exactl...

    Text Solution

    |

  17. sin{2(sin^(-1)(sqrt(5))/3-cos^(-1)(sqrt(5))/3)} is equal to (ksqrt(5)...

    Text Solution

    |

  18. The number of solutions of "cos"(2sin^(-1)("cot"(tan^(-1)(sec(6cos e c...

    Text Solution

    |