Home
Class 12
MATHS
The number of integral values of x satis...

The number of integral values of x satisfying the equation `tan^(-1) (3x) + tan^(-1) (5x) = tan^(-1) (7x) + tan^(-1) (2x)` is ____

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan^{-1}(3x) + \tan^{-1}(5x) = \tan^{-1}(7x) + \tan^{-1}(2x) \), we will use the properties of inverse tangent functions. ### Step-by-Step Solution: 1. **Write the given equation:** \[ \tan^{-1}(3x) + \tan^{-1}(5x) = \tan^{-1}(7x) + \tan^{-1}(2x) \] 2. **Rearrange the equation:** \[ \tan^{-1}(3x) - \tan^{-1}(2x) = \tan^{-1}(7x) - \tan^{-1}(5x) \] 3. **Apply the formula for the difference of inverse tangents:** The formula states that: \[ \tan^{-1}(a) - \tan^{-1}(b) = \tan^{-1}\left(\frac{a - b}{1 + ab}\right) \] Applying this to both sides: \[ \tan^{-1}\left(\frac{3x - 2x}{1 + 3x \cdot 2x}\right) = \tan^{-1}\left(\frac{7x - 5x}{1 + 7x \cdot 5x}\right) \] 4. **Simplify both sides:** The left side becomes: \[ \tan^{-1}\left(\frac{x}{1 + 6x^2}\right) \] The right side becomes: \[ \tan^{-1}\left(\frac{2x}{1 + 35x^2}\right) \] 5. **Set the arguments equal to each other:** Since \( \tan^{-1}(a) = \tan^{-1}(b) \) implies \( a = b \) (for \( a, b \) in the range of the tangent function): \[ \frac{x}{1 + 6x^2} = \frac{2x}{1 + 35x^2} \] 6. **Cross-multiply to eliminate the fractions:** \[ x(1 + 35x^2) = 2x(1 + 6x^2) \] 7. **Expand both sides:** \[ x + 35x^3 = 2x + 12x^3 \] 8. **Rearrange the equation:** \[ 35x^3 - 12x^3 - 2x + x = 0 \] This simplifies to: \[ 23x^3 - x = 0 \] 9. **Factor out \( x \):** \[ x(23x^2 - 1) = 0 \] 10. **Set each factor to zero:** - \( x = 0 \) - \( 23x^2 - 1 = 0 \) leads to \( 23x^2 = 1 \) or \( x^2 = \frac{1}{23} \) - Thus, \( x = \frac{1}{\sqrt{23}} \) and \( x = -\frac{1}{\sqrt{23}} \) 11. **Determine the integral values of \( x \):** The solutions we found are: - \( x = 0 \) - \( x = \frac{1}{\sqrt{23}} \) (not an integer) - \( x = -\frac{1}{\sqrt{23}} \) (not an integer) Therefore, the only integral value of \( x \) satisfying the equation is: \[ \boxed{1} \]

To solve the equation \( \tan^{-1}(3x) + \tan^{-1}(5x) = \tan^{-1}(7x) + \tan^{-1}(2x) \), we will use the properties of inverse tangent functions. ### Step-by-Step Solution: 1. **Write the given equation:** \[ \tan^{-1}(3x) + \tan^{-1}(5x) = \tan^{-1}(7x) + \tan^{-1}(2x) \] ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (JEE MAIN)|2 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (JEE Advanced)|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix match type|8 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

Solve the equation tan^(-1) 2x + tan^(-1) 3x = pi//4

The largest integral value of x satisfying the inequality (tan^(-1)(x))^(2)-4(tan^(-1)(x))+3gt0 is :

Prove that : 2 tan^(-1) (cosec tan^(-1) x - tan cot^(-1) x) = tan^(-1) x

tan^(- 1)(x+2/x)-tan^(- 1)(4/x)=tan^(- 1)(x-2/x)

Solve the equation tan^(-1)2x+tan^(-1)3x=pi/4

The values of x satisfying "tan"^(-1) (x+3) -"tan"^(-1) (x-3) = "sin"^(-1)((3)/(5)) are

Solve : tan^(-1)(x-1)+tan^(-1)x+tan^(-1)(x+1)=tan^(-1)3x

Solve : tan^(-1)(x-1)+tan^(-1)x+tan^(-1)(x+1)=tan^(-1)3x

Solve: tan^(- 1) (2+x) + tan^(- 1) (2 -x ) = tan^(-1) 2/3

Solve the equation tan^(-1)((x+1)/(x-1))+tan^(-1)((x-1)/x)=tan^(-1)(-7)

CENGAGE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Numerical value type
  1. The solution set of inequality (cot^(-1)x)(tan^(-1)x)+(2-pi/2),cot^(-1...

    Text Solution

    |

  2. If x=sin^(-1)(a^6+1)+cos^(-1)(a^4+1)-tan^(-1)(a^2+1),a in R , then th...

    Text Solution

    |

  3. If the roots of the equation x^(3) -10 x + 11 = 0 are u, v, and w, the...

    Text Solution

    |

  4. The number of values of x for which sin^(-1)(x^2-(x^4)/3+(x^6)/9)+cos^...

    Text Solution

    |

  5. If the domain of the function f(x) = sqrt(3 cos^(-1) (4x) - pi) is [a,...

    Text Solution

    |

  6. If 0<cos^-1(x) <1 and 1+"sin"(cos^(-1)x)+sin^2(cos^(-1)x)+sin^3(cos^(-...

    Text Solution

    |

  7. If tan^(-1)(x+3/x)-tan^(-1)(x-3/x)=tan^(-1)6/x , then the value of x^4...

    Text Solution

    |

  8. If range of function f(x)=sin^(-1)x+2tan^(-1)x+x^2+4x+1 is [p , q], th...

    Text Solution

    |

  9. If cos^(-1)(x)+cos^(-1)(y)+cos^(-1)(z)=pi(sec^2(u)+sec^4(v)+sec^6(w)),...

    Text Solution

    |

  10. If the area enclosed by the curves f(x) = cos^(-1) (cos x) and g(x) = ...

    Text Solution

    |

  11. Absolute value of sum of all integers in the domain of f(x)=cot^(-1)sq...

    Text Solution

    |

  12. The least value of (1+sec^(-1)x)(1+c os^(-1)x) is

    Text Solution

    |

  13. Let cos^(-1)(x)+cos^(-1)(2x)+cos^(-1)(3x)b epidot If x satisfies the e...

    Text Solution

    |

  14. The number of integral values of x satisfying the equation tan^(-1) (3...

    Text Solution

    |

  15. Number of solutions of equation sin(cos^(-1)(tan(sec^(-1)x)))=sqrt(1+x...

    Text Solution

    |

  16. If the equation sin^(-1)(x^2+x+1)+cos^(-1)(lambda x+1)=pi/2 has exactl...

    Text Solution

    |

  17. sin{2(sin^(-1)(sqrt(5))/3-cos^(-1)(sqrt(5))/3)} is equal to (ksqrt(5)...

    Text Solution

    |

  18. The number of solutions of "cos"(2sin^(-1)("cot"(tan^(-1)(sec(6cos e c...

    Text Solution

    |