Home
Class 12
MATHS
Number of solutions of equation sin(cos^...

Number of solutions of equation `sin(cos^(-1)(tan(sec^(-1)x)))=sqrt(1+x)i s//a r e____`

Text Solution

AI Generated Solution

The correct Answer is:
To find the number of solutions for the equation \( \sin(\cos^{-1}(\tan(\sec^{-1}(x)))) = \sqrt{1+x} \), we can follow these steps: ### Step 1: Rewrite the equation We start by rewriting the left-hand side of the equation: \[ \sin(\cos^{-1}(\tan(\sec^{-1}(x)))). \] Using the identity \( \sec^{-1}(x) = \tan^{-1}(\sqrt{x^2 - 1}) \), we can express it as: \[ \tan(\sec^{-1}(x)) = \sqrt{x^2 - 1}. \] Thus, the equation becomes: \[ \sin(\cos^{-1}(\sqrt{x^2 - 1})). \] ### Step 2: Simplify further Next, we can use the identity \( \sin(\cos^{-1}(y)) = \sqrt{1 - y^2} \): \[ \sin(\cos^{-1}(\sqrt{x^2 - 1})) = \sqrt{1 - (\sqrt{x^2 - 1})^2} = \sqrt{1 - (x^2 - 1)} = \sqrt{2 - x^2}. \] Now, our equation is: \[ \sqrt{2 - x^2} = \sqrt{1 + x}. \] ### Step 3: Square both sides To eliminate the square roots, we square both sides: \[ 2 - x^2 = 1 + x. \] ### Step 4: Rearrange the equation Rearranging gives us: \[ x^2 + x - 1 = 0. \] ### Step 5: Solve the quadratic equation We can solve this quadratic equation using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 1 \cdot (-1)}}{2 \cdot 1} = \frac{-1 \pm \sqrt{5}}{2}. \] This gives us two solutions: \[ x_1 = \frac{-1 + \sqrt{5}}{2} \quad \text{and} \quad x_2 = \frac{-1 - \sqrt{5}}{2}. \] ### Step 6: Evaluate the solutions Now we need to check if these solutions fall within the valid ranges for the original functions involved: - The expression \( \sqrt{2 - x^2} \) is defined for \( 2 - x^2 \geq 0 \) or \( -\sqrt{2} \leq x \leq \sqrt{2} \). - The expression \( \sqrt{1 + x} \) is defined for \( 1 + x \geq 0 \) or \( x \geq -1 \). Calculating the approximate values: - \( x_1 = \frac{-1 + \sqrt{5}}{2} \approx 0.618 \) (valid) - \( x_2 = \frac{-1 - \sqrt{5}}{2} \approx -1.618 \) (not valid since it is less than -√2) ### Conclusion Thus, the only valid solution is \( x_1 \). Therefore, the number of solutions to the equation is: \[ \text{Number of solutions} = 1. \]

To find the number of solutions for the equation \( \sin(\cos^{-1}(\tan(\sec^{-1}(x)))) = \sqrt{1+x} \), we can follow these steps: ### Step 1: Rewrite the equation We start by rewriting the left-hand side of the equation: \[ \sin(\cos^{-1}(\tan(\sec^{-1}(x)))). \] Using the identity \( \sec^{-1}(x) = \tan^{-1}(\sqrt{x^2 - 1}) \), we can express it as: ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (JEE MAIN)|2 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (JEE Advanced)|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix match type|8 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

The solution set of the equation sin^(-1)x=2 tan^(-1)x is

Number of solution of the equation 2sin^(-1)(x+2)=cos^(-1)(x+3) is :

The solution(s) of the equation cos^(-1)x=tan^(-1)x satisfy

Number of solution(s) of the equation 2tan^(-1)(2x-1)=cos^(-1)(x) is :

The number of solutions of the equation sin^(-1)|x|=|cos^(-1)x| are

Number of solution (s) of the equations cos^(-1) ( cos x) = x^(2) is

The number of solution (s) of the equation sin^(- 1)(1-x)-2sin^(- 1)x=pi/2 is/are

The solution set of the equation cos^(-1)x-sin^(-1)x=sin^(-1)(1-x) is

The number of solution (s) of the equation sin^-1x + cos^-1(1-x)=sin^-1(-х) is/are

Find the number of real solutions of the equation sin^(-1)(e^(x))+cos^(-1)(x^(2))=pi//2 .

CENGAGE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Numerical value type
  1. The solution set of inequality (cot^(-1)x)(tan^(-1)x)+(2-pi/2),cot^(-1...

    Text Solution

    |

  2. If x=sin^(-1)(a^6+1)+cos^(-1)(a^4+1)-tan^(-1)(a^2+1),a in R , then th...

    Text Solution

    |

  3. If the roots of the equation x^(3) -10 x + 11 = 0 are u, v, and w, the...

    Text Solution

    |

  4. The number of values of x for which sin^(-1)(x^2-(x^4)/3+(x^6)/9)+cos^...

    Text Solution

    |

  5. If the domain of the function f(x) = sqrt(3 cos^(-1) (4x) - pi) is [a,...

    Text Solution

    |

  6. If 0<cos^-1(x) <1 and 1+"sin"(cos^(-1)x)+sin^2(cos^(-1)x)+sin^3(cos^(-...

    Text Solution

    |

  7. If tan^(-1)(x+3/x)-tan^(-1)(x-3/x)=tan^(-1)6/x , then the value of x^4...

    Text Solution

    |

  8. If range of function f(x)=sin^(-1)x+2tan^(-1)x+x^2+4x+1 is [p , q], th...

    Text Solution

    |

  9. If cos^(-1)(x)+cos^(-1)(y)+cos^(-1)(z)=pi(sec^2(u)+sec^4(v)+sec^6(w)),...

    Text Solution

    |

  10. If the area enclosed by the curves f(x) = cos^(-1) (cos x) and g(x) = ...

    Text Solution

    |

  11. Absolute value of sum of all integers in the domain of f(x)=cot^(-1)sq...

    Text Solution

    |

  12. The least value of (1+sec^(-1)x)(1+c os^(-1)x) is

    Text Solution

    |

  13. Let cos^(-1)(x)+cos^(-1)(2x)+cos^(-1)(3x)b epidot If x satisfies the e...

    Text Solution

    |

  14. The number of integral values of x satisfying the equation tan^(-1) (3...

    Text Solution

    |

  15. Number of solutions of equation sin(cos^(-1)(tan(sec^(-1)x)))=sqrt(1+x...

    Text Solution

    |

  16. If the equation sin^(-1)(x^2+x+1)+cos^(-1)(lambda x+1)=pi/2 has exactl...

    Text Solution

    |

  17. sin{2(sin^(-1)(sqrt(5))/3-cos^(-1)(sqrt(5))/3)} is equal to (ksqrt(5)...

    Text Solution

    |

  18. The number of solutions of "cos"(2sin^(-1)("cot"(tan^(-1)(sec(6cos e c...

    Text Solution

    |