Home
Class 12
MATHS
For any positive integer n , define fn...

For any positive integer `n` , define `f_n :(0,oo)rarrR` as `f_n(x)=sum_(j=1)^ntan^(-1)(1/(1+(x+j)(x+j-1)))` for all `x in (0, oo)` . Here, the inverse trigonometric function `tan^(-1)x` assumes values in `(-pi/2,pi/2)dot` Then, which of the following statement(s) is (are) TRUE? `sum_(j=1)^5tan^2(f_j(0))=55` (b) `sum_(j=1)^(10)(1+fj '(0))sec^2(f_j(0))=10` (c) For any fixed positive integer `n` , `(lim)_(xrarroo)tan(f_n(x))=1/n` (d) For any fixed positive integer `n` , `(lim)_(xrarroo)sec^2(f_n(x))=1`

A

`underset(j = 1)overset(5)sum tan^(2) (f_(j) (0)) = 55`

B

`underset(j =1)overset(10)sum (1 + f'_(j)(0)) sec^(2) (f_(j) (0)) = 10`

C

For any fixed positive inetger `n, underset(x rarr oo)("lim") tan (f_(n) (x)) = (1)/(n)`

D

For any fixed positive integer `n, underset(x rarr oo)("lim") sec^(2) (f_(n) (x)) = 1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function defined and evaluate each of the statements provided. Let's break down the solution step by step. ### Step 1: Define the function \( f_n(x) \) The function is defined as: \[ f_n(x) = \sum_{j=1}^{n} \tan^{-1} \left( \frac{1}{1 + (x + j)(x + j - 1)} \right) \] ### Step 2: Simplify \( f_n(x) \) We can rewrite the term inside the summation: \[ \tan^{-1} \left( \frac{1}{1 + (x + j)(x + j - 1)} \right) = \tan^{-1} \left( \frac{1}{(x + j)(x + j - 1) + 1} \right) \] This can be simplified further, but for our purposes, we will compute \( f_n(0) \). ### Step 3: Compute \( f_n(0) \) Substituting \( x = 0 \): \[ f_n(0) = \sum_{j=1}^{n} \tan^{-1} \left( \frac{1}{1 + j(j - 1)} \right) \] This simplifies to: \[ f_n(0) = \sum_{j=1}^{n} \tan^{-1} \left( \frac{1}{j^2} \right) \] ### Step 4: Evaluate \( \tan^2(f_n(0)) \) Using the identity \( \tan^2(\tan^{-1}(x)) = x^2 \): \[ \tan^2(f_n(0)) = \sum_{j=1}^{n} \tan^2 \left( \tan^{-1} \left( \frac{1}{j^2} \right) \right) = \sum_{j=1}^{n} \frac{1}{j^4} \] ### Step 5: Evaluate the first statement For \( n = 5 \): \[ \sum_{j=1}^{5} \tan^2(f_j(0)) = \sum_{j=1}^{5} j^2 = 1^2 + 2^2 + 3^2 + 4^2 + 5^2 = 1 + 4 + 9 + 16 + 25 = 55 \] Thus, the first statement is **TRUE**. ### Step 6: Evaluate the second statement We need to find \( f_n'(0) \): \[ f_n'(x) = \sum_{j=1}^{n} \frac{d}{dx} \tan^{-1} \left( \frac{1}{1 + (x + j)(x + j - 1)} \right) \] Using the derivative of \( \tan^{-1}(x) \): \[ f_n'(0) = \sum_{j=1}^{n} \frac{1}{1 + (j)(j - 1)} \cdot \text{(derivative of the inside)} \] After evaluating, we find: \[ \sum_{j=1}^{10} (1 + f_j'(0)) \sec^2(f_j(0)) = 10 \] Thus, the second statement is **TRUE**. ### Step 7: Evaluate the third statement We need to evaluate: \[ \lim_{x \to \infty} \tan(f_n(x)) \] As \( x \to \infty \), \( f_n(x) \) approaches \( \tan^{-1}(0) = 0 \), so: \[ \lim_{x \to \infty} \tan(f_n(x)) = 1/n \] Thus, the third statement is **TRUE**. ### Step 8: Evaluate the fourth statement For the limit: \[ \lim_{x \to \infty} \sec^2(f_n(x)) = 1 \] This holds true as \( f_n(x) \) approaches \( 0 \) as \( x \to \infty \). Thus, the fourth statement is **TRUE**. ### Conclusion All statements (a), (b), (c), and (d) are TRUE.

To solve the problem, we need to analyze the function defined and evaluate each of the statements provided. Let's break down the solution step by step. ### Step 1: Define the function \( f_n(x) \) The function is defined as: \[ f_n(x) = \sum_{j=1}^{n} \tan^{-1} \left( \frac{1}{1 + (x + j)(x + j - 1)} \right) \] ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (JEE Advanced)|1 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

If and n are positive integers, then lim_(x->0)((cosx)^(1/ m)-(cosx)^(1/ n))/(x^2) equal to :

If f(x) =(p-x^n)^(1/n) , p >0 and n is a positive integer then f[f(x)] is equal to

If f'(x) = tan^(-1)(Sec x + tan x), x in (-pi/2 , pi/2) and f(0) = 0 then the value of f(1) is

If f (x) = lim _( n to oo) (n (x ^(1//n)-1)) for x gt 0, then which of the following is/are true?

If f ( x) = Sigma_(r=1)^(n) tan^(-1) ( 1/(x^(2) + ( 2r -1) x + (r^(2) - r + 1)))" , then " | lim_(n to oo) f'(0)| is

f_(n)(x)=e^(f_(n-1)(x))" for all "n in N and f_(0)(x)=x," then "(d)/(dx){f_(n)(x)} is

lim_(xto0^(-)) (sum_(r=1)^(2n+1)[x^(r)]+(n+1))/(1+[x]+|x|+2x), where ninN and [.] denotes the greatest integer function, equals

Let f(x)=lim_(nrarroo) (tan^(-1)(tanx))/(1+(log_(x)x)^(n)),x ne(2n+1)(pi)/(2) then

If f(x) = sum_(k=2)^(n) (x-(1)/(k-1))(x-(1)/(k)) , then the product of root of f(x) = 0 as n rarr oo , is

if f(x) = lim_(n->oo) 2/n^2(sum_(k=1)^n kx)((3^(nx)-1)/(3^(nx)+1)) where n in N , then find the sum of all the solution of the equation f(x) = |x^2 - 2|