Home
Class 12
MATHS
Using principle of mathematical inductio...

Using principle of mathematical induction prove that `sqrtn<1/sqrt1+1/sqrt2+1/sqrt3+......+1/sqrtn` for all natural numbers `n >= 2`.

Text Solution

AI Generated Solution

To prove the statement \( \sqrt{n} < \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \ldots + \frac{1}{\sqrt{n}} \) for all natural numbers \( n \geq 2 \) using the principle of mathematical induction, we will follow these steps: ### Step 1: Base Case We start by checking the base case \( n = 2 \). \[ \text{LHS: } \sqrt{2} \approx 1.414 \] ...
Promotional Banner

Topper's Solved these Questions

  • PERMUTATION AND COMBINATION

    CENGAGE ENGLISH|Exercise Comprehension|8 Videos
  • PROBABILITY

    CENGAGE ENGLISH|Exercise Comprehension|2 Videos

Similar Questions

Explore conceptually related problems

Using the principle of mathematical induction, prove that n<2^n for all n in N

Using principle of mathematical induction , prove that n^(3) - 7n +3 is divisible by 3 , for all n belongs to N .

Using principle of mathematical induction, prove that for all n in N, n(n+1)(n+5) is a multiple of 3.

Using the principle of mathematical induction, prove that : 1. 2. 3+2. 3. 4++n(n+1)(n+2)=(n(n+1)(n+2)(n+3))/4^ for all n in N .

Using the principle of mathematical induction prove that : 1. 3+2. 3^2+3. 3^3++n .3^n=((2n-1)3^(n+1)+3)/4^ for all n in N .

Using the principle of mathematical induction , prove that for n in N , (1)/(n+1) + (1)/(n+2) + (1)/(n+3) + "……." + (1)/(3n+1) gt 1 .

Using principle of mathematical induction, prove that 1 + 3 + 3^(2) + … 3^(n-1) = (3^(n) - 1)/(2)

Using principle of mathematical induction prove that x^(2n)-y^(2n) is divisible by x+y for all n belongs to Ndot

Using principle of mathematical induction, prove that 7^(4^(n)) -1 is divisible by 2^(2n+3) for any natural number n.

Using principle of mathematical induction , prove that , (x^(2n)-y^(2n)) is divisible by (x+y) fpr all n in N .

CENGAGE ENGLISH-PRINCIPLE OF MATHEMATICAL INDUCTION-Sovled Examples
  1. Using the principle of mathematical induction, prove that 1.3 + 2.3^(2...

    Text Solution

    |

  2. Using principle of mathematical induction, prove that for all n in N,...

    Text Solution

    |

  3. Prove the following by the principle of mathematical induction:\ 3^...

    Text Solution

    |

  4. Using the principle of mathematical induction prove that 41^n-14^n ...

    Text Solution

    |

  5. Prove the following by using the principle of mathematical inductio...

    Text Solution

    |

  6. Using the principle of mathematical induction , prove that for n in N ...

    Text Solution

    |

  7. A sequence a(1),a(2),a(3), . . . is defined by letting a(1)=3 and a(k)...

    Text Solution

    |

  8. Let A(n) = a(1) + a(2) + "……" + a(n), B(n) = b(1) + b(2) + b(3) + "…."...

    Text Solution

    |

  9. Let U1=1,\ U2=1\ a n d\ U(n+2)=U(n+1)+Un for\ngeq1. use mathematical i...

    Text Solution

    |

  10. If p is a fixed positive integer, prove by induction that p^(n +1) + ...

    Text Solution

    |

  11. Let 0 lt A(i) lt pi for i = 1,2,"……"n. Use mathematical induction to p...

    Text Solution

    |

  12. Prove the following by the principle of mathematical induction: \ 1...

    Text Solution

    |

  13. Using the principle of mathematical induction prove that 1/(1. 2. ...

    Text Solution

    |

  14. Using the principle of mathematical induction, prove that (2^(3n)-1...

    Text Solution

    |

  15. Using the principle of mathematical induction. Prove that (x^(n)-y^(n...

    Text Solution

    |

  16. Using principle of mathematical induction prove that sqrtn<1/sqrt1+1/s...

    Text Solution

    |

  17. Show that (n^(5))/(5)+(n^(3))/(3)+(7n)/(15) is a natural number, for a...

    Text Solution

    |

  18. Using principle of mathematical induction, prove that 7^(4^(n)) -1 is ...

    Text Solution

    |

  19. Prove by mathematical induction that n^(5) and n have the same unit d...

    Text Solution

    |

  20. A sequence b(0),b(1),b(2), . . . is defined by letting b(0)=5 and b(k)...

    Text Solution

    |