Home
Class 12
MATHS
Prove that sqrt(10)[(sqrt(10)+1)^(100)-(...

Prove that `sqrt(10)[(sqrt(10)+1)^(100)-(sqrt(10)-1)^(100)]` .

Text Solution

AI Generated Solution

To prove that \( \sqrt{10} \left( (\sqrt{10}+1)^{100} - (\sqrt{10}-1)^{100} \right) \) is an even number, we can use the Binomial Theorem. ### Step-by-step Solution: 1. **Understanding the Expression**: We need to analyze the expression \( \sqrt{10} \left( (\sqrt{10}+1)^{100} - (\sqrt{10}-1)^{100} \right) \). 2. **Applying the Binomial Theorem**: ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Example|10 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.1|17 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos

Similar Questions

Explore conceptually related problems

Prove that ((i-sqrt(3))/(i+sqrt(3)))^(100)+((i+sqrt(3))/(i-sqrt(3)))^(100)=-1

Prove that cos^(-1) (sqrt(1/3))-cos^(-1) (sqrt((1)/(6)))+cos^(-1) ((sqrt(10)-1)/(3sqrt2))=cos^(-1) (2/3)

Prove that : 4(sin^(-1)(1/sqrt(10)) + cos^(-1)( 2/sqrt(5)))=pi

Prove that: cos18^0=(sqrt(10+2sqrt(5)))/4 .

Prove that: sin36^0=(sqrt(10-2sqrt(5)))/4 .

Prove that : (1)/(sqrt(2)+1)+ (1)/(sqrt(3)+sqrt(2))+ (1)/(2+sqrt(3))=1

Solve, sqrt(x-6)-sqrt(10-x) ge 1 .

Find the number of terms in the expansions of the following: (sqrt(x)+sqrt(y))^(10)+(sqrt(x)-sqrt(y))^(10)

Prove that tan^(-1).(1)/(sqrt2) + sin^(-1).(1)/(sqrt5) - cos^(-1).(1)/(sqrt10) = -pi + cot^(-1) ((1 + sqrt2)/(1 - sqrt2))

Simplify : ( 5- sqrt(10 ))/( 5+ sqrt( 10 ) ) -( 5+ sqrt(10 ))/( 5-sqrt(10))