Home
Class 12
MATHS
Find the degree of the polynomial 1/(sqr...

Find the degree of the polynomial `1/(sqrt(4x+1)){((1+sqrt(4x+1))/2)^7-((1+sqrt(4x+1))/2)^7}`

Text Solution

AI Generated Solution

To find the degree of the polynomial given by \[ L = \frac{1}{\sqrt{4x + 1}} \left( \left( \frac{1 + \sqrt{4x + 1}}{2} \right)^7 - \left( \frac{1 - \sqrt{4x + 1}}{2} \right)^7 \right), \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Example|10 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.1|17 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos

Similar Questions

Explore conceptually related problems

Degree of the polynomial [sqrt(x^2+1)+sqrt(x^2-1)]^8+[2/(sqrt(x^2+1)+sqrt(x^2-1))]^8 is.

If 1/(sqrt(4x+1)){((1+sqrt(4x+1))/2)^n-((1-sqrt(4x+1))/2)^n}=a_0+a_1x then find the possible value of ndot

Find the domain of the function f(x) = sqrt( 4 - x) + (1)/( sqrt( x^(2) - 1))

int(sqrt(1-x^(2))+sqrt(1+x^(2)))/(sqrt(1-x^(4)))dx=

Solve sqrt(x+3-4sqrt(x-1))+sqrt(x+8-6sqrt(x-1))=1

Solve sqrt(x+3-4sqrt(x-1))+sqrt(x+8-6sqrt(x-1))=1

Solve sqrt(x+3-4sqrt(x-1))+sqrt(x+8-6sqrt(x-1))=1

Find the domain of the functions f(x) = (1)/(sqrt( 4x^(2)-1)) +log _e (x(x^(2) -1))

Find the domain of the function f(x) defined by f(x)=sqrt(4-x)+1/(sqrt(x^2-1)) .

Find the domain of the function f(x) defined by f(x)=sqrt(4-x)+1/(sqrt(x^2-1)) .