Home
Class 12
MATHS
If T0,T1, T2, ,Tn represent the terms i...

If `T_0,T_1, T_2, ,T_n` represent the terms in the expansion of `(x+a)^n ,` then find the value of `(T_0-T_2+T_4-)^2+(T_1-T_3+T_5-)^2n in Ndot`

Text Solution

Verified by Experts

`(x-a)^(n) = .^(n)C_(0)x^(n) + .^( n)C_(1)x^(n-1)a+.^(n)C_(2)x^(n-2)a^(2)+.^(n)C_(3)x^(n-3)a^(3)+"…."`
`= T_(0) + T_(1) + T_(2) + T_(3) + "……"`
Repalcing a by ai, we get
`(x+ai)^(n) = .^(n)C_(0)x^(n) + .^(n)C_(1)x^(n-1)ai + .^(n)C_(2)x^(n-2)(ai)^(2) + .^(n)C_(3)x^(n-3) (ai)^(3) + "....."`
` = (.^(n)C_(0)x^(n)-.^(n)C_(1)x^(n-2)a^(2) + .^(n)C_(4)x^(n-4)a^(4)-"......") + i(.^(n)C_(1)x^(n)a-.^(n)C_(3)x^(n-3)a^(3)+.^(n)C_(5)x^(n-5)a^(5)-"......")`
` = (T_(0) - T_(2) + T_(4) - ".....") + i(T_(1) - T_(3) + T_(5)-".....")`
Taking modulus of both sides and squaring, we get
`|x+ai|^(2n)=|(T_(0)-T_(2)+T_(4)-".......") + i(T_(i ) - T_(3) + T_(5) - ".....")|^(2)`
or `(x^(2)+a^(2))^(n) = (T_(0) - T_(2) + T_(4)-"......")^(2)+(T_(1) - T_(3) + T_(5) -"......")^(2)`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Example|10 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.1|17 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos

Similar Questions

Explore conceptually related problems

In the expansion of (x-1/(3x^2))^9, the term independent of x is a. T_3 b. T_4 c. T_5 d. none of these

If t gt0 and t^(2)-4=0 , what is the value of t ?

Find the value of ln(int_(0)^(1) e^(t^(2)+t)(2t^(2)+t+1)dt)

The coefficients of (r-1)^(t h),\ r t h\ a n d\ (r+1)^(t h) terms in the expansion of (x+1)^n are in the ratio 1:3:5. Find n\ a n d\ rdot

If the coefficients of (r-5)t h a n d(2r-1)t h terms in the expansion of (1+x)^(34) are equal, find rdot

If T_2/T_3 in the expansion of (a + b)^n and T_3/T_4 in the expansion of (a + b)^(n+3) are equal, then n is equal to

If int_0^1(e^t)/(1+t)dt=a , then find the value of int_0^1(e^t)/((1+t)^2)dt in terms of a .

(1)/(4) T T, (1)/(2)Tt,(1)/(4) t t is binomial expansion of

If t_(1),t_(2),t_(3) are the feet of normals drawn from (x_(1),y_(1)) to the parabola y^(2)=4ax then the value of t_(1)t_(2)t_(3) =

Given that T_(1)=100 N then find T_(2)