Home
Class 12
MATHS
If n=12 m(m in N), prove that ^n C0-(^n...

If `n=12 m(m in N),` prove that `^n C_0-(^n C_2)/((2+sqrt(3))^2)+(^n C_4)/((2+sqrt(3))^4)-(^n C_6)/((2+sqrt(3))^6)+=` ` (-1)^m((2sqrt(2))/(1+sqrt(3)))^ndot`

Text Solution

Verified by Experts

`.(n)C_(0)-(.^(n)C_(2))/((2+sqrt(3))^(2))+(.^(n)C_(4))/((2+sqrt(3))^(4))-(.^(n)C_(6))/((2+sqrt(3))^(6))+"...."`
= Real part of `(1+(i)/(2sqrt(3)))^(n)`
= Real part of `(1+i(2-sqrt(3))^(n)`
= Real part of `(1+ I tan'(pi)/(12))^(n)`
= Real part of `((cos'pi/12+isin'(pi)/(12))^(n))/(cos^(n)'(pi)/(12))`
= Real part of `((cos' (npi)/(12)+isin'(npi)/(12)))/(cos^(n)'(pi)/(12))`
` = (cos'(npi)/(12))/(cos^(n)'(pi)/(12)) = (cos mpi)/(cos^(n)'(pi)/(12))`
` = (-1)^(m)((2sqrt(2))/(1+sqrt(3)))^(n) , [:' cos'(pi)/(12) = (sqrt(3) + 1)/(2sqrt(2))]`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Example|10 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.1|17 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos

Similar Questions

Explore conceptually related problems

Prove that ^n C_1(^n C_2)(^n C_3)^3(^n C_n)^nlt=((2^n)/(n+1))^(n+1_C()_2),AAn in Ndot

Prove that (.^n C_0)/1+(.^n C_2)/3+(.^n C_4)/5+(.^n C_6)/7+ . . . =(2^n)/(n+1)dot

Prove that ^n C_0+^n C_3+^n C_6+=1/3(2^n+2cos((npi)/3)) .

Prove that (^(2n)C_0)^2-(^(2n)C_1)^2+(^(2n)C_2)^2-+(^(2n)C_(2n))^2-(-1)^n^(2n)C_ndot

lim_(n to oo)[(sqrt(n+1)+sqrt(n+2)+....+sqrt(2n))/(n sqrt((n)))]

lim_(n->oo) ((sqrt(n^2+n)-1)/n)^(2sqrt(n^2+n)-1)

The sum of the series (1)/(sqrt(1)+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))+ . . . . .+(1)/(sqrt(n^(2)-1)+sqrt(n^(2))) equals

Prove that (.^(n)C_(1))/(2) + (.^(n)C_(3))/(4) + (.^(n)C_(5))/(6) + "…." = (2^(n) - 1)/(n+1) .

Prove that (.^(n)C_(1))/(2) + (.^(n)C_(3))/(4) + (.^(n)C_(5))/(6) + "…." = (2^(n) - 1)/(n+1) .

Prove that (.^(n)C_(0))/(1)+(.^(n)C_(2))/(3)+(.^(n)C_(4))/(5)+(.^(n)C_(6))/(7)+"....."+= (2^(n))/(n+1)