Home
Class 12
MATHS
Prove that sum(r=1)^(k) (-3)^(r-1) ""^(3...

Prove that `sum_(r=1)^(k) (-3)^(r-1) ""^(3n)C_(2r-1) = 0` , where `k = 3n//2` and n is an even integer.

Text Solution

AI Generated Solution

To prove that \[ \sum_{r=1}^{k} (-3)^{r-1} \binom{3n}{2r-1} = 0 \] where \( k = \frac{3n}{2} \) and \( n \) is an even integer, we can follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Example|10 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.1|17 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos

Similar Questions

Explore conceptually related problems

Prove that sum_(r=0)^(n) 3^( r" "n)C_(r ) =4^(n) .

Prove that sum_(r=1)^n(-1)^(r-1)(1+1/2+1/3++1/r)^n C_r=1/n .

Prove that sum_(r=0)^(2n) r.(""^(2n)C_(r))^(2)= 2.""^(4n-1)C_(2n-1) .

Prove that sum_(k=0)^(n) (-1)^(k).""^(3n)C_(k) = (-1)^(n). ""^(3n-1)C_(n)

The value of sum_(r=0)^(3n-1)(-1)^r ^(6n)C_(2r+1)3^r is

Prove that sum_(r=0)^ssum_(s=1)^n^n C_s^n C_r=3^n-1.

Prove that sum_(k=1)^(n-1)(n-k)cos(2kpi)/n=-n/2 , where ngeq3 is an integer

Prove that sum_(r = 1)^(n+1) (2^(r +1) C_(r - 1) )/(r (r + 1)) = (3^(n+2) - 2n - 5)/((n+1)(n+2))

The sum S_(n)=sum_(k=0)^(n)(-1)^(k)*^(3n)C_(k) , where n=1,2,…. is

Find the sum sum_(r=1)^(n) r^(2) (""^(n)C_(r))/(""^(n)C_(r-1)) .