Home
Class 12
MATHS
Find the sum of the series ^10 C0+^(10)C...

Find the sum of the series `^10 C_0+^(10)C_1+^(10)C_2++^(10)C_7dot`

Text Solution

AI Generated Solution

To find the sum of the series \( \binom{10}{0} + \binom{10}{1} + \binom{10}{2} + \binom{10}{3} + \binom{10}{4} + \binom{10}{5} + \binom{10}{6} + \binom{10}{7} \), we can use the properties of binomial coefficients. ### Step-by-step Solution: 1. **Understanding the Binomial Theorem**: The binomial theorem states that: \[ (1 + x)^n = \sum_{k=0}^{n} \binom{n}{k} x^k ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Example|10 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.1|17 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos

Similar Questions

Explore conceptually related problems

The sum of the series .^(20)C_(0)-.^(20)C_(1)+ .^(20)C_(2)-.^(20)C_(3)+...-.+ .^(20)C_(10) is -

Find the sum of the series .^15 C_0+^(15)C_1+^(15)C_2+...............+^(15)C_7 .

The sum of the series ""^20C_0 - ""^20C_1 + ""^20C_2 - ""^20C_3 +…….""^20C_10 is

Find the sum of the series .^(84)C_(4)+6xx.^(84)C_(5)+15xx.^(84)C_(6)+20xx.^(84)C_(7)+15xx.^(84)C_(8) +6xx.^(84)C_(9)+.^(84)C_(10) .

Find the sum .^(10)C_1+^(10)C_3+^(10)C_5+^(10)C_7+^(10)C_9

The sum of the series Sigma_(r = 0)^(10) ""^(20)C_(r) " is " 2^(19) + (""^(20)C_(10))/(2)

The sum of the series ""^20 C_0-""^20 C_1+""^20C_2-""^20C_3+...-...+""^20C_10 is:

Find the value of (.^(10)C_(10))+(.^(10)C_(0)+.^(10)C_(1))+(.^(10)C_(0)+.^(10)C_(1)+.^(10)C_(2))+"...."+(.^(10)C_(0)+.^(10)C_(1)+.^(10)C_(2)+"....." + .^(10)C_(9)) .

Find the value of .^(20)C_(0) xx .^(13)C_(10) - .^(20)C_(1) xx .^(12)C_(9) + .^(20)C_(2) xx .^(11)C_(8) - "……" + .^(20)C_(10) .

Find the sum to 10 terms oif the series 1+3+6+10+…..