Home
Class 12
MATHS
If n is a positive integer, prove that 1...

If `n` is a positive integer, prove that `1-2n+(2n(2n-1))/(2!)-(2n(2n-1)(2n-2))/(3!)++(-1)^(n-1)(2n(2n-1)(n+2))/((n-1)!)=(-1)^(n+1)(2n)!//2(n !)^2dot`

Text Solution

AI Generated Solution

To prove the given statement, we will follow a systematic approach using the properties of binomial coefficients and the binomial theorem. ### Step-by-Step Solution: 1. **Understanding the Expression**: We need to prove that: \[ 1 - 2n + \frac{2n(2n-1)}{2!} - \frac{2n(2n-1)(2n-2)}{3!} + \ldots + (-1)^{n-1} \frac{2n(2n-1)(2n-2)\ldots(2n-n+1)}{(n-1)!} = (-1)^{n+1} \frac{(2n)!}{2(n!)^2} ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Example|10 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.1|17 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos

Similar Questions

Explore conceptually related problems

Prove that : 1+2+3++n=(n(n+1))/2

If n ge 1 is a positive integer, then prove that 3^(n) ge 2^(n) + n . 6^((n - 1)/(2))

If n is a positive integer, prove that underset(r=1)overset(n)sumr^(3)((""^(n)C_(r))/(""^(n)C_(r-1)))^(2)=((n)(n+1)^(2)(n+2))/(12)

1+n. (2n)/(1+n)+(n(n+1))/(1.2) ((2n)/(1+n))^2+…..

Prove that (2n!)/( n!) = 1,3,5 ….( 2n-1) 2^(n)

Prove that ((2n+1)!)/(n !)=2^n{1. 3. 5 .........(2n-1)(2n+1)}

For all positive integers n , show that \ ^(2n)C_n+\ ^(2n)C_(n-1)=1/2(\ ^(2n+2)C_(n+1)) .

For all positive integers n , show that \ ^(2n)C_n+\ ^(2n)C_(n-1)=1/2(\ ^(2n+2)C_(n+1)) .

Prove that [(n+1)//2]^n >(n !)dot

Using mathematical induction, prove that (1)/(1.3.5) + (2)/(3.5.7) +….+(n)/((2n-1)( 2n+1) ( 2n+3)) =( n(n+1))/( 2(2n+1) (2n+3))