Home
Class 12
MATHS
Find the sum (sumsum)(0leiltjlen) ""^(n)...

Find the sum `(sumsum)_(0leiltjlen) ""^(n)C_(i)`.

Text Solution

AI Generated Solution

To solve the problem of finding the sum \( \sum_{i=0}^{n} \sum_{j=0}^{n} \binom{n}{i} \), we will break it down step by step. ### Step-by-Step Solution: 1. **Understanding the Double Summation**: We need to evaluate the double summation \( \sum_{i=0}^{n} \sum_{j=0}^{n} \binom{n}{i} \). Notice that the inner summation does not depend on \( j \). Therefore, we can simplify the expression. \[ ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Example|10 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.1|17 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos

Similar Questions

Explore conceptually related problems

Find the sum sumsum_(0leiltjlen)"^nC_i

Find the sum sumsum_(0leiltjlen) "^nC_i "^nC_j

Find the value of sumsum_(0leiltjlen) (""^(n)C_(i)+""^(n)C_(j)) .

Find the sumsum_(0leiltjlen)1 .

The value of (sumsum)_(0leilejlen) (""^(n)C_(i) + ""^(n)C_(j)) is equal to

Find the sum sumsum_(0lt=ilt=jlt=n)^n C_i^n C_j

Find the following sums : (i) sumsum_(inej) ""^(n)C_(i).""^(n)C_(j) , (ii) sumsum_(0leiltjlen) ""^(n)C_(i).""^(n)C_(j) . (iii) sumsum_(0leiltjlen) ""^(n)C_(i).""^(n)C_(j) .

Find the value of (sumsum)_(0leiltjlen) (1+j)(""^(n)C_(i)+""^(n)C_(j)) .

Find the sum sumsum_(0lt=i < jlt=n-1)j^n C_idot

If (1 + x)^(n) = sum_(r=0)^(n) C_(r),x^(r) , then prove that (sumsum)_(0leiltjlen) ((i)/(C_(i)) + (j)/(C_(j))) = (n^(2))/(2) sum_(r=0)^(n) (1)/(C_(r)) .