Home
Class 12
MATHS
Find the value of sumsum(0leiltjlen) (""...

Find the value of `sumsum_(0leiltjlen) (""^(n)C_(i)+""^(n)C_(j))`.

Text Solution

AI Generated Solution

To solve the problem of finding the value of the summation \( \sum_{0 \leq i < j \leq n} \left( \binom{n}{i} + \binom{n}{j} \right) \), we can break it down into manageable steps. ### Step-by-Step Solution: 1. **Understanding the Summation**: We need to evaluate the expression \( \sum_{0 \leq i < j \leq n} \left( \binom{n}{i} + \binom{n}{j} \right) \). This can be rewritten as: \[ \sum_{0 \leq i < j \leq n} \binom{n}{i} + \sum_{0 \leq i < j \leq n} \binom{n}{j} ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Example|10 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.1|17 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos

Similar Questions

Explore conceptually related problems

Find the value of (sumsum)_(0leiltjlen) (1+j)(""^(n)C_(i)+""^(n)C_(j)) .

The value of (sumsum)_(0leilejlen) (""^(n)C_(i) + ""^(n)C_(j)) is equal to

Find the sum (sumsum)_(0leiltjlen) ""^(n)C_(i) .

Find the sum sumsum_(0leiltjlen)"^nC_i

Find the sum sumsum_(0leiltjlen) "^nC_i "^nC_j

Find the value of sumsum_(0leilejlt=n)(i+j)(nC_i+n C_j)dot

The value of sum_(0leiltjle5) sum(""^(5)C_(j))(""^(j)C_(i)) is equal to "_____"

Find the value of sumsum_(0leilejlt=n)c_i^n"" c_j^ndot

Evaluate sum_(0 le i le j le 10) ""^(21)C_(i) * ""^(21)C_(j) .

Find the following sums : (i) sumsum_(inej) ""^(n)C_(i).""^(n)C_(j) , (ii) sumsum_(0leiltjlen) ""^(n)C_(i).""^(n)C_(j) . (iii) sumsum_(0leiltjlen) ""^(n)C_(i).""^(n)C_(j) .