Home
Class 12
MATHS
Find the value of (sumsum)(0leiltjlen) ...

Find the value of `(sumsum)_(0leiltjlen) (1+j)(""^(n)C_(i)+""^(n)C_(j))`.

Text Solution

AI Generated Solution

To solve the problem, we need to find the value of the double summation: \[ S = \sum_{0 \leq i < j \leq n} \binom{n}{i} + \binom{n}{j} \] ### Step 1: Rewrite the Summation We can express the double summation in terms of \(i\) and \(j\) as follows: ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Example|10 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.1|17 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos

Similar Questions

Explore conceptually related problems

Find the value of sumsum_(0leiltjlen) (""^(n)C_(i)+""^(n)C_(j)) .

The value of (sumsum)_(0leilejlen) (""^(n)C_(i) + ""^(n)C_(j)) is equal to

Find the sum (sumsum)_(0leiltjlen) ""^(n)C_(i) .

Find the value of sumsum_(0leilejlt=n)(i+j)(nC_i+n C_j)dot

Find the sumsum_(0leiltjlen)1 .

Find the sum sumsum_(0leiltjlen) "^nC_i "^nC_j

Find the value of sumsum_(0leilejlt=n)c_i^n"" c_j^ndot

If (1 + x)^(n) = C_(0) = C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , find the values of the following (sumsum)_(0leile jlen)(i +j)(C_(i)pmC_(j) )^(2)

Find the sum sumsum_(0leiltjlen)"^nC_i

The value of the expansion (sumsum)_(0 le i lt j le n) (-1)^(i+j-1)"^(n)C_(i)*^(n)C_(j)=