Home
Class 12
MATHS
Find the sum sum(r=0)^(5)""^(32)C(6r)....

Find the sum `sum_(r=0)^(5)""^(32)C_(6r)`.

Text Solution

AI Generated Solution

To solve the problem of finding the sum \( \sum_{r=0}^{5} \binom{32}{6r} \), we can use the Binomial Theorem and properties of binomial coefficients. ### Step-by-Step Solution: 1. **Understanding the Binomial Theorem**: The Binomial Theorem states that: \[ (x + y)^n = \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^k ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Example|10 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.1|17 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos

Similar Questions

Explore conceptually related problems

Find the sum sum_(r=0)^n^(n+r)C_r .

Find the sum sum_(r=0)^n^(n+r)C_r .

If ""^(m)C_(r)=0" for "rgtm then the sum sum_(r=0)^(m)""^(18)C_(r)""^(20)C_(m-r) is maximum when m =

Find the sum sum_(i=0)^r.^(n_1)C_(r-i) .^(n_2)C_i .

Find the sum sum_(r=1)^(n) r^(2) (""^(n)C_(r))/(""^(n)C_(r-1)) .

Find the sum_(r =0)^(r) ""^(n_(1))C_((r-i))""^(n_(2))C_(i) .

Find the sum sum_(r=1)^n r/(r+1)!

Find the sum sum_(r=1)^n r(r+1)(r+2)(r+3)

The sum of the series sum_(r=0) ^(n) ""^(2n)C_(r), is

The sum of the series sum_(r=0) ^(n) "r."^(2n)C_(r), is