Home
Class 12
MATHS
Prove that sum(alpha+beta+gamma=10)^(10 ...

Prove that `sum_(alpha+beta+gamma=10)^(10 !)/(alpha!beta!gamma!)=3^(10)dot`

Text Solution

Verified by Experts

Consider expansion of `(x+y+z)^(10)`
General term `T_(r ) = (10!)/(alpha!beta!gamma!) x^(alpha)y^(beta)z^(gamma)`. Where `alpha + beta + gamma = 10`
Now `underset(alpha+beta+gamma=10)(sum)(10!)/(alpha!beta!gamma!)=3^(10)`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Example|10 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.1|17 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos

Similar Questions

Explore conceptually related problems

If alpha,beta,gamma, in (0,pi/2) , then prove that (s i(alpha+beta+gamma))/(sinalpha+sinbeta+singamma)<1

Prove that: sinalpha+sinbeta+singamma-sin(alpha+beta+gamma)=4sin((alpha+beta)/2)sin((beta+gamma)/2)sin((gamma+alpha)/2)dot

Let x-ysin alpha-zsin beta=0 , xsin alpha+zsin gamma-y=0 and xsin beta+ysin gamma-z=0 be the equations of the planes such that alpha+beta+gamma=pi//2 (where alpha,beta and gamma!=0)dot Then show that there is a common line of intersection of the three given planes.

Prove that cosalpha+cosbeta+cosgamma+cos(alpha+beta+gamma)=4cos((alpha+beta)/2)cos((beta+gamma)/2)cos((gamma+alpha)/2)

Prove that cosalpha+cosbeta+cosgamma+cos(alpha+beta+gamma)=4cos((alpha+beta)/2)cos((beta+gamma)/2)cos((gamma+alpha)/2)

Prove that: cosalpha+cosbeta+cosgamma+cos(alpha+beta+gamma)=4cos((alpha+beta)/2)cos((beta+gamma)/2)cos((gamma+alpha)/2) .

If alpha, beta, gamma and delta are the roots of the equation x ^(4) -bx -3 =0, then an equation whose roots are (alpha +beta+gamma)/(delta^(2)), (alpha +beta+delta)/(gamma^(2)), (alpha +delta+gamma)/(beta^(2)), and (delta +beta+gamma)/(alpha^(2)), is:

If alpha,beta,gamma are different from 1 and are the roots of a x^3+b x^2+c x+d=0a n d(beta-gamma)(gamma-alpha)(alpha-beta)=(25)/2 , then prove that |alpha/(1-alpha)beta/(1-beta)gamma/(1-gamma)alphabetagammaalpha^2beta^2gamma^2|=(25 d)/(2(a+b+c+d))

Determine the values of alpha ,beta , gamma when [{:( 0, 2beta, gamma),( alpha ,beta, -gamma),( alpha ,-beta, gamma):}] is orthogonal.

Prove that |2alpha+beta+gamma+deltaalphabeta+gammadelta alpha+beta+gamma+delta2(alpha+beta)(gamma+delta)alphabeta(gamma+delta)+gammadelta(alpha+beta) alphabeta+gammadeltaalphabeta(gamma+delta)+gammadelta(alpha+beta)2alphabetagammadelta|=0