Home
Class 12
MATHS
Find the sum 1 xx 2 xx .^(n)C(1) + 2 xx ...

Find the sum `1 xx 2 xx .^(n)C_(1) + 2 xx 3 xx .^(n)C_(2) + "….." + n xx (n+1) xx .^(n)C_(n)`.

Text Solution

AI Generated Solution

To find the sum \( S = 1 \cdot 2 \cdot \binom{n}{1} + 2 \cdot 3 \cdot \binom{n}{2} + \ldots + n \cdot (n+1) \cdot \binom{n}{n} \), we can express this sum in a more manageable form. ### Step-by-Step Solution: 1. **Express the Sum**: The given sum can be expressed in summation notation: \[ S = \sum_{r=1}^{n} r(r+1) \binom{n}{r} ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Example|10 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.1|17 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos

Similar Questions

Explore conceptually related problems

Find the sum .^(n)C_(0) + 2 xx .^(n)C_(1) + xx .^(n)C_(2) + "….." + (n+1) xx .^(n)C_(n) .

Find the sum .^(n)C_(1) + 2 xx .^(n)C_(2) + 3 xx .^(n)C_(3) + "……" + n xx .^(n)C_(n) .

Prove that .^(n)C_(0) +5 xx .^(n)C_(1) + 9 xx .^(n)C_(2) + "…." + (4n+1) xx .^(n)C_(n) = (2m+1) 2^(n) .

Prove that .^(n)C_(1) + 2 xx .^(n)C_(2) + 3 xx .^(n)C_(3) + "…." + n xx .^(n)C_(n) = n2^(n-1) . Hence, prove that .^(n)C_(1).(.^(n)C_(2))^(2).(.^(n)C_(3))^(3)"......."(.^(n)C_(n))^(n) le ((2^(n))/(n+1))^(.^(n+1)C_(2)) AA n in N .

Prove that .^(n)C_(0) - .^(n)C_(1) + .^(n)C_(2) - .^(n)C_(3) + "……" + (-1)^(r) + .^(n)C_(r) + "……" = (-1)^(r ) xx .^(n-1)C_(r ) .

Find the value of 1 xx 1!+2 xx 2!+3 xx 3!+........+n xx n!

Find the sum Sigma_(j=1)^(n) Sigma_(i=1)^(n) I xx 3^j

Show that (1 xx 2^(2) + 2 xx 3^(2) + . . . + n xx ( n + 1) ^(2))/( 1 ^(2) xx 2 + 2^(2) xx 3 + . . . + n^(2) xx ( n + 1) ) = ( 3 n + 5)/( 3 n + 1 )

Find the sum 3^n C_0-8^n C_1+13^n C_2xx^n C_3+dot

Find the sum of the series 1xxn+2(n-1)+3xx(n-2)++(n-1)xx2+nxx1.