Home
Class 12
MATHS
If x + y = 1, prove that sum(r=0)^(n) r"...

If `x + y = 1`, prove that `sum_(r=0)^(n) r""^(n)C_(r) x^(r ) y^(n-r) = nx`.

Text Solution

Verified by Experts

We have
`underset(r=0)overset(n)sumr.^(n)C_(r)x^(r )y^(n-r) = underset(r=1)overset(n)sumn.^(n-1)C_(r-1)x^(r-1)x^(1)y^(n-r)`
` = nx underset(r=1)overset(n)sum .^(n-1)C_(r-1)x^(r-1)y^((n-1)-(r-1))`
`= nx(x+y)^(n-1)`
` = nx , [:' x + y = 1]`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Example|10 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.1|17 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos

Similar Questions

Explore conceptually related problems

Prove that sum_(r=0)^(n) 3^( r" "n)C_(r ) =4^(n) .

If x+y=1, prove that sum_(r=0)^n .^nC_r x^r y^(n-r) = 1 .

Prove that sum_(r=0)^(2n) r.(""^(2n)C_(r))^(2)= 2.""^(4n-1)C_(2n-1) .

Prove that sum_(r=0)^n3^r^n C_r=4^n .

Prove that sum_(r=0)^n^n C_r3^r=4^n

Prove that sum_(r=0)^(2n)(r. ^(2n)C_r)^2=n^(4n)C_(2n) .

Prove that sum_(r=0)^(n) ""^(n)C_(r )sin rx. cos (n-r)x = 2^(n-1) xx sin nx .

Prove that sum_(r = 0)^n r^2 . C_r = n (n +1).2^(n-2)

If ""(n)C_(0), ""(n)C_(1), ""(n)C_(2), ...., ""(n)C_(n), denote the binomial coefficients in the expansion of (1 + x)^(n) and p + q =1 sum_(r=0)^(n) r^(2 " "^n)C_(r) p^(r) q^(n-r) = .

In a DeltaABC , prove that Sigma_(r=0)^(n)""^(n)C_(r)a^(r)b^(n-r) cos ( r B-(n-r)A)=c^(n) .