Home
Class 12
MATHS
Prove that .^(n)C(0) + (.^(n)C(1))/(2) ...

Prove that `.^(n)C_(0) + (.^(n)C_(1))/(2) + (.^(n)C_(2))/(3) + "……" +(. ^(n)C_(n))/(n+1) = (2^(n+1)-1)/(n+1)`.

Text Solution

Verified by Experts

Method I :
We have
`T_(r ) = (.^(n)C_(r-1))/(r ) = (.^(n+1)C_(r))/(n+1)`
`:.` Required sum `= underset(r=1)overset(n+1)sumT_(r)`
` = underset(r=1)overset(n+1)sum(.^(n+1)Cr)/(n+1)`
` = (.^(n+1)C_(1) + .^(n+1)C_(2) + "….." + .^(n+1)C_(n+1))/(n+1)`
` = ((.^(n+1)C_(0) + .^(n+1)C_(1) + .^(n+1)C_(2) + "......" + .^(n+1)C_(n+1))-1)/(n+1)`
`= (2^(n+1) - 1)/(n+1)`
Method II :
We have `(1+x)^(n)= .^(n)C_(0) + .^(n)C_(1)x+.^(n)C_(2)x^(2)+"...."+.^(n)C_(n)x^(n)`
` :. underset(0)overset(1)int(1+x)^(n)dx = underset(0)overset(1)int(.^(n)C_(0) + .^(n)C_(1)x+.^(n)C_(2)x^(2) + "...." + .^(n)C_(n)x^(n))dx`
`rArr [((1+x)^(n+1))/(n+1)]_(0)^(1)=[.^(n)C_(0)x+(.^(n)C_(1)x^(2))/(2)+(.^(n)C_(2)x^(3))/(3) + "....."+ (.^(n)C_(n)x^(n+1))/(n+1)]_(0)^(1)`
`rArr (2^(n+1))/(n+1) -1/(n+1)=.^(n)C_(0)+(.^(n)C_(1))/(2)+(.^(n)C_(2))/(3) + "......" + (.^(n)C_(n))/(n+1)`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Example|10 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.1|17 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos

Similar Questions

Explore conceptually related problems

Prove that (.^(n)C_(1))/(2) + (.^(n)C_(3))/(4) + (.^(n)C_(5))/(6) + "…." = (2^(n) - 1)/(n+1) .

Prove that (.^(n)C_(1))/(2) + (.^(n)C_(3))/(4) + (.^(n)C_(5))/(6) + "…." = (2^(n) - 1)/(n+1) .

Prove that .^(n)C_(0) +5 xx .^(n)C_(1) + 9 xx .^(n)C_(2) + "…." + (4n+1) xx .^(n)C_(n) = (2m+1) 2^(n) .

Prove that .^(n)C_(1) + 2 xx .^(n)C_(2) + 3 xx .^(n)C_(3) + "…." + n xx .^(n)C_(n) = n2^(n-1) . Hence, prove that .^(n)C_(1).(.^(n)C_(2))^(2).(.^(n)C_(3))^(3)"......."(.^(n)C_(n))^(n) le ((2^(n))/(n+1))^(.^(n+1)C_(2)) AA n in N .

Prove that (.^(n)C_(0))/(1)+(.^(n)C_(2))/(3)+(.^(n)C_(4))/(5)+(.^(n)C_(6))/(7)+"....."+= (2^(n))/(n+1)

Prove that .^(n)C_(0) - .^(n)C_(1) + .^(n)C_(2) - .^(n)C_(3) + "……" + (-1)^(r) + .^(n)C_(r) + "……" = (-1)^(r ) xx .^(n-1)C_(r ) .

Prove that .^(n-1)C_(3)+.^(n-1)C_(4) gt .^(n)C_(3) if n gt 7 .

Find the sum .^(n)C_(0) + 2 xx .^(n)C_(1) + xx .^(n)C_(2) + "….." + (n+1) xx .^(n)C_(n) .

Show that (C_(0))/(1) - (C_(1))/(4) + (C_(2))/(7) - … + (-1)^(n) (C_(n))/(3n +1) = (3^(n) * n!)/(1*4*7…(3n+1)) , where C_(r) stands for ""^(n)C_(r) .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + … + C_(n) x^(n) , prove that C_(0) - (C_(1))/(2) + (C_(2))/(3) -…+ (-1)^(n) (C_(n))/(n+1) = (1)/(n+1) .