Home
Class 12
MATHS
Prove that sum(r=1)^n(-1)^(r-1)(1+1/2+1...

Prove that `sum_(r=1)^n(-1)^(r-1)(1+1/2+1/3++1/r)^n C_r=1/n` .

Text Solution

Verified by Experts

`sum(-1)^(r-1).^(n)C_(r)(1/1+1/2+1/3+"...."+1/r)`
`=sum((-1)^(r-1).^(n)C_(r)underset(0)overset(1)int(1+x+x^(2)+"....."+x^(r-1))dx)`
`=sum(-1)^(r-1)..^(n)C_(r)underset(0)overset(1)int((1-x^(r))/(1-x))dx`
`= underset(0)overset(1)intunderset(r=1)overset(n)sum((-1)^(r-1)..^(n)C_(r)-(-1)^(r-1)..^(n)C_(r)x^(r))/(1-x)dx`
`=underset(0)overset(1) int(.^(n)C_(0)+(1-x)^(n) + (1-x)^(n))/(1-x)dx`
`= underset(0)overset(1)int(1-x)^(n-1)dx`
`= [(-(1-x)^(n-1))/(n-1)]_(0)^(1)`
`= 1/n`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Example|10 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.1|17 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos

Similar Questions

Explore conceptually related problems

sum_(r=1)^(n) (-1)^(r-1) ""^nC_r(a - r) =

Prove that sum_(r = 1)^(n+1) (2^(r +1) C_(r - 1) )/(r (r + 1)) = (3^(n+2) - 2n - 5)/((n+1)(n+2))

Show that the HM of (2n+1)C_r and (2n+1)C_(r+1) is (2n+1)/(n+1) times of (2n)C_r Also show that sum_(r=1)^(2n-1) (-1)^(r-1)*r/(2nC_r)=n/(n+1) .

Prove that sum_(r=1)^(k) (-3)^(r-1) ""^(3n)C_(2r-1) = 0 , where k = 3n//2 and n is an even integer.

Prove that sum_(r = 0)^n r^2 . C_r = n (n +1).2^(n-2)

Prove that sum_(r=0)^n^n C_r(-1)^r[i^r+i^(2r)+i^(3r)+i^(4r)]=2^n+2^(n/2+1)cos(npi//4), where i=sqrt(-1)dot

The value of sum_(r=1)^(n)(-1)^(r-1)((r )/(r+1))*^(n)C_(r ) is (a) 1/(n+1) (b) 1/n (c) 1/(n-1) (d) 0

Prove that sum_(r = 1)^n r^3 ((n_C_r)/(C_(r - 1)))^2 = (n (n + 1)^2 (n+2))/(12)

Prove that (3!)/(2(n+3))=sum_(r=0)^n(-1)^r((^n C_r)/(^(r+3)C_r))

Prove that sum_(r=0)^ssum_(s=1)^n^n C_s^n C_r=3^n-1.