Home
Class 12
MATHS
Prove that (3!)/(2(n+3))=sum(r=0)^n(-1)^...

Prove that `(3!)/(2(n+3))=sum_(r=0)^n(-1)^r((^n C_r)/(^(r+3)C_r))`

Text Solution

Verified by Experts

`underset(r=0)overset(n)sum(-1)^(r ) ((.^(n)C_(r))/(.^(r+3)C_(3)))`
`= underset(r=0)overset(n)sum(-1)^(r)(n!)/((n-r)!r!)(3!r!)/((r+3)!)`
`= 3!underset(r=0)overset(n)sum(-1)^(r) (n!)/((n-r)!(r+3!))`
`=(3!)/((n+1)(n+2)(n+3))underset(r=0)overset(n)sum(-1)^(r).^(n+3)C_(r+3)`
` = - (3!)/((n+1)(n+2)(n+3))underset(r=0)overset(n)sum(-1)^(r+3).^(n+3)C_(r+3)`
`= - (3!)/((n+1)(n+2)(n+3))[-.^(n+3)C_(3) +.^(n+3)C_(4)-"....."+(-1)^(n+3).^(n+3)C_(n+3)]`
`= - (3!)/((n+1)(n+2)(n+3))[(.^(n+3)C_(0)-.^(n+3)C_(1)+.^(n+3)C_(2)-.^(n+3)C_(3)+"...."+(-1)^(n+3).^(n+3)C_(n+3))-(.^(n+3)C_(0)-.^(n+3)C_(1)+.^(n+3)C_(2))]`
`- (3!)/((n+1)(n+2)(n+3))[(1-1)^(n+3)-(1-(n+3))-((n+3)(n+2))/(2)]`
`= (3!)/((n+1)(n+2)(n+3))[1-n-3+((n+3)(n+2))/(2)]`
`= (3!)/((n+1)(n+2)(n+3)) ((n^(2)+3n+2))/(2)`
`= (3!)/(2(n+3))`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Example|10 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.1|17 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos

Similar Questions

Explore conceptually related problems

sum_(r = 0)^(n-1) (C_r)/(C_r + C_(r+1)) =

If n in N, then sum_(r=0)^(n) (-1)^(n) (""^(n)C_(r))/(""^(r+2)C_(r)) is equal to .

Prove that sum_(r=1)^n(-1)^(r-1)(1+1/2+1/3++1/r)^n C_r=1/n .

Prove that sum_(r=0)^ssum_(s=1)^n^n C_s^n C_r=3^n-1.

Prove that sum_(r=0)^n r(n-r)(^nC_ r)^2=n^2(^(2n-2)C_n)dot

Find the sum of sum_(r=1)^n(r^n C_r)/(^n C_(r-1) .

Prove that sum_(r=0)^n3^r^n C_r=4^n .

Prove that sum_(r=0)^(n) 3^( r" "n)C_(r ) =4^(n) .

Prove that sum_(r=0)^n^n C_r3^r=4^n

Prove that sum_(r = 1)^(n+1) (2^(r +1) C_(r - 1) )/(r (r + 1)) = (3^(n+2) - 2n - 5)/((n+1)(n+2))