Home
Class 12
MATHS
Prove that sum(r=0)^(2n) r.(""^(2n)C(r))...

Prove that `sum_(r=0)^(2n) r.(""^(2n)C_(r))^(2)= 2.""^(4n-1)C_(2n-1)`.

Text Solution

AI Generated Solution

To prove that \[ \sum_{r=0}^{2n} r \cdot \binom{2n}{r}^2 = 2 \cdot \binom{4n-1}{2n-1}, \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Example|10 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.1|17 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos

Similar Questions

Explore conceptually related problems

Prove that sum_(r=0)^(2n)(r. ^(2n)C_r)^2=n^(4n)C_(2n) .

Statement -1: sum_(r=0)^(n) r(""^(n)C_(r))^(2) = n (""^(2n -1)C_(n-1)) Statement-2: sum_(r=0)^(n) (""^(n)C_(r))^(2)= ""^(2n)C_(n)

Find the sum sum_(r=1)^(n) r^(2) (""^(n)C_(r))/(""^(n)C_(r-1)) .

Prove that sum_(r=0)^(n) ""^(n)C_(r).(n-r)cos((2rpi)/(n)) = - n.2^(n-1).cos^(n)'(pi)/(n) .

Prove that sum_(r=0)^n r(n-r)(^nC_ r)^2=n^2(^(2n-2)C_n)dot

Statement-1: sum_(r=0)^(n) (1)/(r+1) ""^(n)C_(r) = (1)/((n+1)x) {( 1 + x)^(n+1) -1}^(-1) Statement-2: sum_(r=0)^(n) (""^(n)C_(r))/(r+1) = (2^(n+1))/(n+1) .

Prove that sum_(r=0)^(n) ""^(n)C_(r )sin rx. cos (n-r)x = 2^(n-1) xx sin nx .

sum_(r=0)^(n)(""^(n)C_(r))/(r+2) is equal to :

Prove that sum_(r = 0)^n r^2 . C_r = n (n +1).2^(n-2)

Prove that: (i) r.^(n)C_(r) =(n-r+1).^(n)C_(r-1) (ii) n.^(n-1)C_(r-1) = (n-r+1) .^(n)C_(r-1) (iii) .^(n)C_(r)+ 2.^(n)C_(r-1) +^(n)C_(r-2) =^(n+2)C_(r) (iv) .^(4n)C_(2n): .^(2n)C_(n) = (1.3.5...(4n-1))/({1.3.5..(2n-1)}^(2))