Home
Class 12
MATHS
Find the following sums : (i) sumsum(i...

Find the following sums :
(i) `sumsum_(inej) ""^(n)C_(i).""^(n)C_(j)` , (ii) `sumsum_(0leiltjlen) ""^(n)C_(i).""^(n)C_(j)`.
(iii) `sumsum_(0leiltjlen) ""^(n)C_(i).""^(n)C_(j)`.

Text Solution

AI Generated Solution

To solve the given sums, we will use the properties of binomial coefficients and some algebraic manipulations. Let's break down each part step by step. ### (i) Find the sum \( \sum_{i=0}^{n} \sum_{j=0}^{n} \binom{n}{i} \binom{n}{j} \) 1. **Understanding the Double Summation**: The expression \( \sum_{i=0}^{n} \sum_{j=0}^{n} \binom{n}{i} \binom{n}{j} \) can be interpreted as the product of two sums: \[ \left( \sum_{i=0}^{n} \binom{n}{i} \right) \left( \sum_{j=0}^{n} \binom{n}{j} \right) ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Example|10 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.1|17 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos

Similar Questions

Explore conceptually related problems

Find the sum sumsum_(0leiltjlen) "^nC_i "^nC_j

Find the sum (sumsum)_(0leiltjlen) ""^(n)C_(i) .

Find the value of sumsum_(0leiltjlen) (""^(n)C_(i)+""^(n)C_(j)) .

Find the sum sumsum_(0leiltjlen)"^nC_i

Find the value of (sumsum)_(0leiltjlen) (1+j)(""^(n)C_(i)+""^(n)C_(j)) .

The value of (sumsum)_(0leilejlen) (""^(n)C_(i) + ""^(n)C_(j)) is equal to

Find the sum sumsum_(0lt=ilt=jlt=n)^n C_i^n C_j

Find the following sums : (i) .^(n)C_(0)-.^(n)C_(2)+.^(n)C_(4)-.^(n)C_(6)+"....." (ii) .^(n)C_(1)-.^(n)C_(3)+.^(n)C_(5)-.^(n)C_(7)+"...." (iii) .^(n)C_(0)+.^(n)C_(4)+.^(n)C_(8)+.^(n)C_(12)+"....." (iv) .^(n)C_(2) + .^(n)C_(6) + .^(n)C_(10)+.^(n)C_(14)+"......" (v) .^(n)C_(1) + .^(n)C_(5)+.^(n)C_(9)+.^(n)C_(13)+"...." (vi) .^(n)C_(3) + .^(n)C_(7) + .^(n)C_(11) + .^(n)C_(15) + "....."

Determine n if (i) ""^(2n)C_(3) : ""^(n)C_(3) = 12:1 (ii) ""^(2n)C_(3): ""^(n)C_(3)= 11:1

The sum sumsum_(0leilejle10) (""^(10)C_(j))(""^(j)C_(r-1)) is equal to