Home
Class 12
MATHS
Prove that ^100 C0^(100)C2+^(100)C2^(100...

Prove that `^100 C_0^(100)C_2+^(100)C_2^(100)C_4+^(100)C_4^(100)C_6++^(100)C_(98)^(100)C_(100)=1/2[^(200)C_(98)-^(100)C_(49)]dot`

Text Solution

Verified by Experts

To find
`S = .^(100)C_(0).^(100)C_(2)+.^(100)C_(2).^(100)C_(4)+.^(100)C_(4).^(100)C_(6)+"....."+.^(100)C_(98).^(100)C_(100)`
Consider,
`.^(100)C_(0).^(100)C_(2)+.^(100)C_(1).^(100)C_(3) + .^(100)C_(2).^(100)C_(4)+.^(100)C_(3)+.^(100)C_(5)+"...." + .^(100)C_(98).^(100)C_(100)`
`= .^(100)C_(0).^(100)C_(98)+.^(100)C_(1).^(100)C_(97) + .^(100)C_(2).^(100)C_(96)+.^(100)C_(3).^(100)C_(95) + "....."+^(100)C_(98) .^(100)C_(0)`
= Coefficients of `x^(98)` in `(1+x)^(100) (1+x)^(100)`
`= .^(200)C_(98) " "(1)`
Also,
`.^(100)C_(0).^(100)C_(2)-.^(100)C_(1).^(100)C_(3) +.^(100)C_(2).^(100)C_(4)-.^(100)C_(3).^(100)C_(5)+"..."+.^(100)C_(98).^(100)C_(100)`
`=` Cefficient of `x^(98)` in `(1+x)^(100)(1-x)^(100)`
`=` Coefficient of `x^(98)` in `(1-x^(2))^(100)`
`= -.^(100)C_(49)`
Adding (1) and (2), we have
`2(.^(100)C_(0).^(100)C_(2)+.^(100)C_(2).^(100)C_(4)+.^(100)C_(4).^(100)C_(6)+"...."+.^(100)C_(98).^(100)C_(100))`
`= [.^(200)C_(98)-.^(100)C_(149)]`
`rArr .^(100)C_(0).^(100)C_(2)+.^(100)C_(2).^(100)C_(4)+.^(100)C_(4).^(100)C_(6)+"....."+.^(100)C_(98).^(100)C_(100)`
`= 1/2[.^(200)C_(98) - .^(100)C_(49)]`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Example|10 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.1|17 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos

Similar Questions

Explore conceptually related problems

Prove the following identieties using the theory of permutation where C_(0),C_(1),C_(2),……C_(n) are the combinatorial coefficents in the expansion of (1+x)^n,n in N: ""^(100)C_(10)+5.""^(100)C_(11)+10 .""^(100)C_(12)+ 10.""^(100)C_(13)+ 10.""^(100)C_(14)+ 10.""^(100)C_(15)=""^(105)C_(90)

The value of ""^(40)C_(0) xx ""^(100)C_(40) _ ""^(40)C_(1) xx ""^(99)C_(40) + ""^(40)C_(2) xx ""^(98)C_(40) -"……." + ""^(40)C_(40) xx ""^(60)C_(40) is equal to "____" .

Evaluate: ^100C_97

Let t_(100)=sum_(r=0)^(100)(1)/(("^(100)C_(r ))^(5)) and S_(100)=sum_(r=0)^(100)(r )/(("^(100)C_(r ))^(5)) , then the value of (100t_(100))/(S_(100)) is (a) 1 (b) 2 (c) 3 (d) 4

If ""^(100)C_(6)+4." "^(100)C_(7)+6." "^(100)C_(8)+4." "^(100)C_(9)+""^(100)C_(10) has the value equal to " "^(x)C_(y) , then the possible value (s) of x+y can be :

If ^100 C_5+5^(100)C_6+10^(100)C_7+10^(100)C_8+5^(100)C_9+^(100)C_(10) has the value equal to ^n C_r , then least value of (n+r) is equal to 200 (2) 195 (3) 115 (4) 105

The coefficient of x^(53) in the expansion sum_(m=0)^(100)^100C_m(x-3)^(100-m)2^m is (a) 100 C_(47) (b.) 100 C_(53) (c.) -100C_(53) (d.) none of these

The value of sum_(r=0)^50 (.^(100)C_r.^(200)C_(150+r)) is equal to

(C_(0))/(1)+(C_(1))/(2)+(C_(2))/(3)+ . . . .+(C_(100))/(101) equals

The value of ((100),(0))((200),(150))+((100),(1))((200),(151))+......+((100),(50))((200),(200)) equals (where ((n),(r ))="^(n)C_(r) )