Home
Class 12
MATHS
Let m,in N and C(r) = ""^(n)C(r), for 0...

Let m,`in` N and `C_(r) = ""^(n)C_(r)`, for ` 0 le r len`
Statement-1: `(1)/(m!)C_(0) + (n)/((m +1)!) C_(1) + (n(n-1))/((m +2)!) C_(2) +… + (n(n-1)(n-2)….2.1)/((m+n)!) C_(n)`
` = ((m + n + 1 )(m+n +2)…(m +2n))/((m +n)!)`
Statement-2: For r `le`0
`""^(m)C_(r)""^(n)C_(0)+""^(m)C_(r-1)""^(n)C_(1) + ""^(m)C_(r-2) ""^(n)C_(2) +...+ ""^(m)C_(0)""^(n)C_(r) = ""^(m+n)C_(r)`.

Text Solution

Verified by Experts

`1/(m!).^(n)C_(0)+(n)/((m+1)!).^(n)C_(1)+(n(n-1))/((m+2)!).^(n)C_(2)+"....."+(n(n-1)xx"...."xx2xx1)/((m+2)!).^(n)C_(n)`
`= (n!)/((m+n)!)(((m+n)!)/(m!n!).^(n)C_(0)+((m+n)!n)/((m+1)!n!).^(n)C_(1)+((m+n)!n(n-1))/((m+2)!n!) xx .^(n)C_(2)+"....."+((m+n)!)/(n!)+"....."+((m+n)!)/(n!)(n(n-1)xx"....."xx2xx1)/((m+n)!).^(n)C_(n))`
`= (n!)/((m+n)!)(.^(m+n)C_(n).^(n)C_(0)+((m+n)!)/((m+1)!(n-1)!).^(n)C_(1)+((m+n)!)/((m+2)!(n-2)!)xx.^(n)C_(2) + "....."+((m+n)!)/(1)(1)/((m+n)!)(1)/((m+n)!) .^(n)C_(n))`.
`= (n!)/((m+n)!)(.^(m+n)C_(n).^(n)C_(0)+.^(m+n)C_(n-1).^(n)C_(1)+.^(m+n)C_(n-2).^(n)C_(2)+"...."+.^(m+n)C_(0).^(n)C_(n))`
`= (n!)/((m+n)!)`[coefficient of `x^(n)` in `(1+x)^(m+n)(1+x)^(n)`]
`= (n!)/((m+n)!)`[coefficient of `x^(n)` in `(1+x)^(m+2n)`]
`= (n!)/((m+n)!).^(m+2n)C_(n)`
`= (n!)/((m+n)!)((m+2n)!)/((m+n)!n!)`
`= ((m+2n)!)/((m+n)!(m+n)!)`
`= ((m+n+1)(m+n+2)(m+n+3)"...."(m+2n))/((m+n)!)`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Example|10 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.1|17 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos

Similar Questions

Explore conceptually related problems

""^(n) C_(r+1)+2""^(n)C_(r) +""^(n)C_(r-1)=

""^(n)C_(r+1)+^(n)C_(r-1)+2.""^(n)C_(r)=

For ""^(n) C_(r) + 2 ""^(n) C_(r-1) + ""^(n) C_(r-2) =

If m,n,r are positive integers such that r lt m,n, then ""^(m)C_(r)+""^(m)C_(r-1)""^(n)C_(1)+""^(m)C_(r-2)""^(n)C_(2)+...+ ""^(m)C_(1)""^(n)C_(r-1)+""^(n)C_(r) equals

.^(n)C_(r)+2.^(n)C_(r-1)+.^(n)C_(r-2)=

""^(n)C_(n-r)+3.""^(n)C_(n-r+1)+3.""^(n)C_(n-r+2)+""^(n)C_(n-r+3)=""^(x)C_(r)

""^(n)C_(r)+2""^(n)C_(r-1)+^(n)C_(r-2) is equal to

""^(n-2)C_(r)+2""^(n-2)C_(r-1)+""^(n-2)C_(r-2) equals :

Prove that 1/(m !)^n C_0+n/((m+1)!)^n C_1+(n(n-1))/((m+2)!)^n C_2++(n(n-1)2xx1)/((m+n)!)^n C_n=((m+n+1)(m+n+2)(m+2n))/((m+n)!)

If n is even and ""^(n)C_(0)lt""^(n)C_(1) lt ""^(n)C_(2) lt ....lt ""^(n)C_(r) gt ""^(n)C_(r+1) gt""^(n)C_(r+2) gt......gt""^(n)C_(n) , then, r=