Home
Class 12
MATHS
Prove that ^m C1^n Cm-^m C2^(2n)Cm+^m C3...

Prove that `^m C_1^n C_m-^m C_2^(2n)C_m+^m C_3^(3n)C_m-=(-1)^(m-1)n^mdot`

Text Solution

Verified by Experts

`.^(m)C_(1).^(n)C_(m)-.^(m)C_(2).^(2n)C_(3)+.^(m)C_(3).^(3n)C_(m)-"...."+(-1)^(m-1).^(m)C_(m).^(mn)C_(m)`
`= "Coefficient of" x^(m) " in"`
`.^(m)C_(1)(1+x)^(n)-.^(m)C_(2)(1+x)^(2n)+.^(m)C_(3)(1+x)^(3n)-"...."+(-1)^(m-1).^(m)C_(m)(1+x)^(mn)`
`=` Coefficient of `x^(m)` in
`.^(m)C_(0) - [.^(m)C_(0) - .^(m)C_(1)(1+x)^(n)+.^(m)C_(2)(1+x)^(2n)-"...."+(-1)^(m).^(m)C_(m)(1+x)^(mn)]`
`=` Coefficient of `x^(m)` in `[1-{1-(1+x)^(n)}^(m)]`
`=` Coefficient of `x^(m)` in `[1-{-nx-.^(n)C_(2)x^(2)-.^(n)C_(3)x^(3)-"......"-.^(n)C_(n)x^(n)}^(m)]`
`= - (-n)^(m)`
`= (-1)^(m-1)n^(m)`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Example|10 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.1|17 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos

Similar Questions

Explore conceptually related problems

Using binomial theorem (without using the formula for .^n C_r ) , prove that .^nC_4+^m C_2-^m C_1.^n C_2 = .^m C_4-^(m+n)C_1.^m C_3+^(m+n)C_2.^m C_2-^(m+n)C_3^m.C_1 +^(m+n)C_4dot

If m in N and mgeq2 prove that: |1 1 1\ ^m C_1\ ^(m+1)C_1\ ^(m+2)C_1\ ^m C_2\ ^(m+1)C_2\ ^(m+2)C_2|=1 .

Show that: ^mC_1+^(m+1)C_2+^(m+2)C_3+…….+^(m+n-1)C_n=^nC_1+^(n+1)C_2+^(n+2)C_3+…+^(n+m-1)C_m .

If m >1,n in N show that 1^m+2^m+2^(2m)+2^(3m)++2^(n m-m)> n^(1-m)(2^n-1)^mdot

Prove that 1/(m !)^n C_0+n/((m+1)!)^n C_1+(n(n-1))/((m+2)!)^n C_2++(n(n-1)2xx1)/((m+n)!)^n C_n=((m+n+1)(m+n+2)(m+2n))/((m+n)!)

If n=12 m(m in N), prove that ^n C_0-(^n C_2)/((2+sqrt(3))^2)+(^n C_4)/((2+sqrt(3))^4)-(^n C_6)/((2+sqrt(3))^6)+= (-1)^m((2sqrt(2))/(1+sqrt(3)))^ndot

If m, n, r, in N then .^(m)C_(0).^(n)C_(r) + .^(m)C_(1).^(n)C_(r-1)+"…….."+.^(m)C_(r).^(n)C_(0) = coefficient of x^(r) in (1+x)^(m)(1+x)^(n) = coefficient of x^(f) in (1+x)^(m+n) The value of r for which S = .^(20)C_(r.).^(10)C_(0)+.^(20)C_(r-1).^(10)C_(1)+"........".^(20)C_(0).^(10)C_(r) is maximum can not be

Prove that .^(n)C_(0) +5 xx .^(n)C_(1) + 9 xx .^(n)C_(2) + "…." + (4n+1) xx .^(n)C_(n) = (2m+1) 2^(n) .

If m, n, r, in N then .^(m)C_(0).^(n)C_(r) + .^(m)C_(1).^(n)C_(r-1)+"…….."+.^(m)C_(r).^(n)C_(0) = coefficient of x^(r) in (1+x)^(m)(1+x)^(n) = coefficient of x^(f) in (1+x)^(m+n) The value of r(0 le r le 30) for which S = .^(20)C_(r).^(10)C_(0) + .^(20)C_(r-1).^(10)C_(1) + ........ + .^(20)C_(0).^(10)C_(r) is minimum can not be

The value of .^(n)C_(1)+.^(n+1)C_(2)+.^(n+2)C_(3)+"….."+.^(n+m-1)C_(m) is equal to a. .^(m+n)C_(n) - 1 b. .^(m+n)C_(n-1) c. .^(m)C_(1) + ^(m+1)C_(2) + ^(m+2)C_(3) + "…." + ^(m+n-1)C_(n) d. .^(m+n)C_(m) - 1