Home
Class 12
MATHS
If (18 x^2+12 x+4)^n=a0+a(1x)+a2x2++a(2n...

If `(18 x^2+12 x+4)^n=a_0+a_(1x)+a2x2++a_(2n)x^(2n),` prove that `a_r=2^n3^r(^(2n)C_r+^n C_1^(2n-2)C_r+^n C_2^(2n-4)C_r+)` .

Text Solution

Verified by Experts

`(18x^(2)+12x+4)^(n) = 2^(n)[2+9x^(2)+6x]^(n)`
Now, `a_(r )` is coefficient of `x^(r )` in `2^(n) [(3x+1)^(2)+1]^(n)`. Hence
`a_(r) =` Coefficient of `x^(r )2^(n)[.^(n)C_(0)(3x+1)^(2n)+.^(n)C_(1)(3x+1)^(2n-2) + .^(n)C_(2)(3x+1)^(2n-4)+"…."+.^(n)C_(r )(3x+1)^(2n-2r)+"....."]`
or `a_(r)=2^(n)[.^(n)C_(0)3^(r).^(2n)C_(r)+.^(n)C_(1)3^(r).^(2n-2)C_(r)+.^(n)C_(2)3^(r).^(2n-4)C_(r)+"...."]`
`= 2^(n)3^(r)[.^(n)C_(0).^(2n)C_(r)+.^(n)C_(1).^(2n-2)C_(r)+.^(n)C_(2).^(2n-4)C_(r)+"...."]`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Example|10 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.1|17 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos

Similar Questions

Explore conceptually related problems

If (18x^2+12x+4)^n = a_0 +a_(1x)+ a_(2x)^2 +......+ a_(2n)x^(2n) , prove that a_r= 2^n3^r ( "^(2n)C_r + "^(n)C_1 "^(2n-2)C_r + "^(n)C_2 "^(2n-4)C_r + ....

Prove that sum_(r=0)^(2n)(r. ^(2n)C_r)^2=n^(4n)C_(2n) .

If (1 + x +x^2)^n = a_0 +a_1x + a_2x^2 + ….+a_(2n)x^(2n) then prove that a_0 +a_2 +a_4+……+a_(2n) = (3^n +1)/(2)

Prove that sum_(r=0)^(2n) r.(""^(2n)C_(r))^(2)= 2.""^(4n-1)C_(2n-1) .

Prove that sum_(r = 0)^n r^2 . C_r = n (n +1).2^(n-2)

Prove that sum_(r=0)^n r(n-r)(^nC_ r)^2=n^2(^(2n-2)C_n)dot

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that C_(0)^(2) - C_(1)^(2) + C_(2)^(2) -…+ (-1)^(n) *C_(n)^(2)= 0 or (-1)^(n//2) * (n!)/((n//2)! (n//2)!) , according as n is odd or even Also , evaluate C_(0)^(2) - C_(1)^(2) + C_(2)^(2) - ...+ (-1)^(n) *C_(n)^(2) for n = 10 and n= 11 .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n)," prove that " 1^(2)*C_(1) + 2^(2) *C_(2) + 3^(2) *C_(3) + …+ n^(2) *C_(n) = n(n+1)* 2^(n-2) .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that (1*2) C_(2) + (2*3) C_(3) + …+ {(n-1)*n} C_(n) = n(n-1) 2^(n-2) .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + … + C_(n) x^(n) , prove that C_(0) - (C_(1))/(2) + (C_(2))/(3) -…+ (-1)^(n) (C_(n))/(n+1) = (1)/(n+1) .