Home
Class 12
MATHS
Prove that lim(xrarr0) ((1+x)^(n) - 1)/(...

Prove that `lim_(xrarr0) ((1+x)^(n) - 1)/(x) = n`.

Text Solution

AI Generated Solution

To prove that \[ \lim_{x \to 0} \frac{(1+x)^n - 1}{x} = n, \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Example|10 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.1|17 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos

Similar Questions

Explore conceptually related problems

lim_(xrarr0) ((x+1)^(5)-1)/(x)

lim_(xrarr0)x sec x

Evaluate : lim_(xrarr0)((1-x)^(n)-1)/(x)

lim_(xrarr0) (sqrt(1+x)-1)/(x)=?

lim_(xrarr0)((1+x)^(n)-1)/(x) is equal to

lim_(xrarr0) (3sqrt(1+x-1))/(x)

lim_(xrarr0)((1-cos x)/x^2)

lim_(xrarr0) (sinx)/(x)= ?

lim_(xrarr0) (x^(2)-x)/(sinx)

lim_( xrarr0) (1-cosx)/(x^(2))