Home
Class 12
MATHS
Given, sn=1+q+q^2++q^n ,Sn=1+(q+1)/2+((q...

Given, `s_n=1+q+q^2++q^n ,S_n=1+(q+1)/2+((q+1)/2)^2++((q+1)/2)^n ,q!=1` prove that `^n+1C_1+^(n+1)C_2s_1+^(n+1)C_3s_2++^(n+1)C_(n+1)s_n2^n S_ndot`

Text Solution

Verified by Experts

`s_(n)` is in geometric progression, hence,
`s_(n) = (q^(n+1) -1)/(q-1) . q ne 1`
Also, `S_( n)` is geometric progression.
`:. S_(n) = (((q+1)/(2))^(n+1)-1)/(((q+1)/(2))-1) = ((q+1)^(n+1).-2^(n+1))/(2^(n)(q-1))`
Consider `.^((n+1))C_(1)+.^((n+1))C_(2)s_(1)+.^((n+1))C_(3)s_(3)+"....."+.^((n+1))C_(n+1)s_(n)`
`.^((n+1))C_(1)((q-1)/(q-1))+.^((n+1))C_(2)(q^(2)-1)(q-1)+"......"+.^((n+1))C_(n+1)(q^(n+1)-1)/(q-1)`
`=(1/(q-1))[{.^((n+1))C_(1)q+.^((n+1))C_(2)q^(2)+"...."+.^((n+1))C_(n+1)q^(n+1)}-{.^((n+1))C_(1)+.^((n+1))C_(2)+"....."+.^((n+1))C_(n+1)}]`
`= ((1)/(q-1)) [{(1+q)^(n+1)-1}-{2^(n+1)-1}]`
Since
`{{:((1+q)^(n+1)=.^(n+1)C_(0)+.^((n+1))C_(1)q+.^((n+1))C_(2)q^(2)+"...."+.^((n+1))C_(n+1)q^(n+1)),(" "2^(n-1)=.^((n+1))C_(0)+.^((n+1))C_(1)+"...."+.^((n+1))C_(n+1)):}}`
`rArr ((1)/(q-1))[(1+q)^(n+1)-2^(n+1)-2^(n+1)]= ((1+q)^(n+1)-2^(n+1))/(q-1)`
Thus, `.^((n+1))C_(1)+.^((n+1))C_(2)s_(1)+"....."+.^((n+1))C_(n+1)s_(n) = ((1+q)^(n+1)-2^(n+1))/(q-1)`
Therefore, `.^(n+1)C_(1) + .^((n+1))C_(2)s_(1) + "....."+.^((n+1))C_(n+1)s_(n+1)=2^(n)S_(n)` (Using (1))
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.1|17 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.2|10 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Matrix|4 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos

Similar Questions

Explore conceptually related problems

Given, s_n=1+q+q^2+.....+q^n ,S_n=1+(q+1)/2+((q+1)/2)^2+...+((q+1)/2)^n ,q!=1 prove that "^(n+1)C_1+^(n+1)C_2s_1+^(n+1)C_3s_2+......+^(n+1)C_(n+1)s_n=2^n S_ndot

Prove that ^n C_0 .^n C_0-^(n+1)C_1 . ^n C_1+^(n+2)C_2 . ^n C_2-=(-1)^ndot

Prove that "^n C_0^(2n)C_n-^n C_1^(2n-1)C_n+^n C_2xx^(2n-2)C_n++(-1)^n^n C_n^n C_n=1.

Prove that ^n C_1(^n C_2)(^n C_3)^3(^n C_n)^nlt=((2^n)/(n+1))^(n+1_C()_2),AAn in Ndot

Prove that (^(2n)C_0)^2-(^(2n)C_1)^2+(^(2n)C_2)^2-+(^(2n)C_(2n))^2-(-1)^n^(2n)C_ndot

Prove that sum_(r=0)^ssum_(s=1)^n^n C_s^n C_r=3^n-1.

Prove that nC_1(nC_2)^2(n C_3)^3.......(n C_n)^n le ((2^n)/(n+1))^((n+1)C_2),AAn in Ndot

""^((2n + 1))C_0 + ""^((2n+ 1))C_1 + ""^((2n + 1))C_2 + ……+""^((2n + 1))C_n =

The value of |1 1 1^n C_1^(n+2)C_1^(n+4)C_1^n C_2^(n+2)C_2^(n+4)C_2| is

Let S_n=1+q+q^2 +...+q^n and T_n =1+((q+1)/2)+((q+1)/2)^2+...((q+1)/2)^n If alpha T_100=^101C_1 +^101C_2 x S_1 ...+^101C_101 x S_100, then the value of alpha is equal to (A) 2^99 (B) 2^101 (C) 2^100 (D) -2^100