Home
Class 12
MATHS
Find the sum underset(0leiltjlen)(sumsum...

Find the sum `underset(0leiltjlen)(sumsum).^(n)C_(i)`.

Text Solution

Verified by Experts

`underset(0leiltjlen)(sumsum)j..^(n)C_(i)`
`= underset(r=0)overset(n-1)sum.^(n)C_(r)[(r+1)+(r+2)+"...."+(n)]`
`= underset(r=0)overset(n-1)sum.^(n)C_(r)[(r+1)+(r+2)+"...."(r+(n-r))]`
`= underset(r=0)overset(n-1)sum.^(n)C_(r)(n-r)/(2)(r+1+n)`
`= 1/2 underset(r=0)overset(n)sum.^(n)C_(r) (n(n+1)-r-r^(2))`
` = 1/2 [n(n+1)underset(r=0)overset(n)sum.^(n)C_(r)-underset(r=0)overset(n)sumr^(n)C_(r)-underset(r=0)overset(n)sumr^(2)..^(n)C_(r)]`
`=1/2[n(n+1).2^(n)-n underset(r=0)overset(n)sum.^(n-1)C_(r-1)-n underset(r=0)overset(n)sumr..^(n-1)C_(r-1)]`
`=1/2[n(n+1).2^(n)-n.2^(n-1)-n underset(r=0)overset(n)sum((n-1)..^(n-2)C_(r-2)+.^(n+1)C_(r-1))]`
`= 1/2[n(2n+1).2^(n-1)-n(n-1).2^(n-2)-n.2^(n-1)]`
`= n(3n+1).2^(n-3)`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.1|17 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.2|10 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Matrix|4 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos

Similar Questions

Explore conceptually related problems

If (1 + x)^(n) = C_(0) = C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , find the values of the following underset(0leile jlen)(sumsum)C_(i)C_(j)

Find the sum sumsum_(0leiltjlen)"^nC_i

Find the sumsum_(0leiltjlen)1 .

For any n in N, let C_(r) stand for ""^(n)C_(r) , r = 0,1,2,3,…,n and let S= sum_(r=0)^(n) (1)/(C_(r)) Statement-1: underset(0leilt i le n)(sumsum) ((i)/(C_(i))+(j)/(C_(j)))= (n^(2))/(2)S Statement-2: underset(0leilt i le n)(sumsum) ((1)/(C_(i))+(1)/(C_(j)))= nS

Find the sum (sumsum)_(0leiltjlen) ""^(n)C_(i) .

Find the value of sumsum_(0leiltjlen) (""^(n)C_(i)+""^(n)C_(j)) .

Find the sum sumsum_(0leiltjlen) "^nC_i "^nC_j

Find the value of (sumsum)_(0leiltjlen) (1+j)(""^(n)C_(i)+""^(n)C_(j)) .

Let S_(1)=underset(0 le i lt j le 100)(sumsum)C_(i)C_(j) , S_(2)=underset(0 le j lt i le 100)(sumsum)C_(i)C_(j) and S_(3)=underset(0 le i = j le 100)(sumsum)C_(i)C_(j) where C_(r ) represents cofficient of x^(r ) in the binomial expansion of (1+x)^(100) If S_(1)+S_(2)+S_(3)=a^(b) where a , b in N , then the least value of (a+b) is

Find the value of underset((inejnek))(sum_(i=0)^(oo)sum_(j=0)^(oo)sum_(k=0)^(oo))1/(3^(i)3^(j)3^(k)) .