Home
Class 12
MATHS
Find the value of 1/(81^n)-((10)/(81^n))...

Find the value of `1/(81^n)-((10)/(81^n))^(2n)C_1+((10^2)/(81^n))^(2n)C_2-((10^3)/(81^n))^(2n)C_3++(10^(2n))/(81^n)` .

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ \frac{1}{81^n} - \frac{10}{81^n} \binom{2n}{1} + \frac{10^2}{81^n} \binom{2n}{2} - \frac{10^3}{81^n} \binom{2n}{3} + \ldots + \frac{10^{2n}}{81^n} \] we can follow these steps: ### Step 1: Factor out the common term The term \(\frac{1}{81^n}\) is common in all terms of the expression. We can factor it out: \[ \frac{1}{81^n} \left( 1 - 10 \binom{2n}{1} + 10^2 \binom{2n}{2} - 10^3 \binom{2n}{3} + \ldots + 10^{2n} \right) \] ### Step 2: Recognize the series The expression inside the parentheses resembles the binomial expansion of \( (1 - x)^{2n} \) where \( x = 10 \): \[ (1 - 10)^{2n} = \sum_{k=0}^{2n} \binom{2n}{k} (-10)^k \] This gives us: \[ 1 - 10 \binom{2n}{1} + 10^2 \binom{2n}{2} - 10^3 \binom{2n}{3} + \ldots + 10^{2n} = (1 - 10)^{2n} \] ### Step 3: Simplify the expression Now substituting \( (1 - 10)^{2n} \) back into our expression, we have: \[ \frac{1}{81^n} \left( (1 - 10)^{2n} \right) = \frac{1}{81^n} (-9)^{2n} \] ### Step 4: Calculate \((-9)^{2n}\) Calculating \((-9)^{2n}\): \[ (-9)^{2n} = 81^n \] ### Step 5: Substitute back into the expression Now substituting this back into our expression gives: \[ \frac{81^n}{81^n} = 1 \] ### Final Answer Thus, the value of the given expression is: \[ \boxed{1} \]

To solve the expression \[ \frac{1}{81^n} - \frac{10}{81^n} \binom{2n}{1} + \frac{10^2}{81^n} \binom{2n}{2} - \frac{10^3}{81^n} \binom{2n}{3} + \ldots + \frac{10^{2n}}{81^n} \] we can follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.2|10 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.3|7 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Example|10 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos

Similar Questions

Explore conceptually related problems

Find the value of 1/(81^n)-(10)/(81^n)C_1+(10^2)/(81^n)C_2-(10^3)/(81^n)C_3++(10^(2n))/(81^n) .

Find the value of n: (i) .^(n)C_(10)=^(n)C_(16) (ii) .^(15)C_(n) =^(15)C_(n+3) (iii) .^(10)C_(n) =^(10)C_(n+2) (iv) .^(25)C_(3n) =.^(25)C_(n+1) (v) .^(n)C_(r) =.^(n)C_(r-2)

Find .^(n)C_(1)-(1)/(2).^(n)C_(2)+(1)/(3).^(n)C_(3)- . . . +(-1)^(n-1)(1)/(n).^(n)C_(n)

The value of |1 1 1^n C_1^(n+2)C_1^(n+4)C_1^n C_2^(n+2)C_2^(n+4)C_2| is

Prove that (^(2n)C_0)^2-(^(2n)C_1)^2+(^(2n)C_2)^2-+(^(2n)C_(2n))^2-(-1)^n^(2n)C_ndot

The value of ""^(n)C_(n)+""^(n+1)C_(n)+""^(n+2)C_(n)+….+""^(n+k)C_(n) :

if (1+a)^(n)=.^(n)C_(0)+.^(n)C_(1)a++.^(n)C_(2)a^(2)+ . . .+.^(n)C_(n)a^(n) , then prove that (.^(n)C_(1))/(.^(n)C_(0))+(2(.^(n)C_(2)))/(.^(n)C_(1))+(3(.^(n)C_(3)))/(.^(n)C_(2))+. . . +(n(.^(n)C_(n)))/(.^(n)C_(n-1))= Sum of first n natural numbers.

Each question has four choices a, b, c and d, out of which only one is correct. Each question contains STATEMENT 1 and STATEMENT 2. Both the statements are TRUE and STATEMENT 2 is the correct explanation of STATEMENT1. Both the statements are TRUE but STATEMENT 2 is NOT the correct explanation of STATEMENT 1. STATEMENT 1 is TRUE and STATEMENT 2 is FALSE. STATEMENT 1 is FALSE and STATEMENT 2 is TRUE. Statement 1: The value of (^(10)^C_0)+(^(10)C_0+(10)C_1)+(^(10)C_0+(10)C_1+(10)C_2)++(^(10)C_0+(10)C_1+(10)C_2++(10)C_9) is 10 2^9 . Statement 2: ^n C_1+2^n C_2+3^n C_3+ n^n C_n=n2^(n-1) .

Evaluate .^(n)C_(0).^(n)C_(2)+2.^(n)C_(1).^(n)C_(3)+3.^(n)C_(2).^(n)C_(4)+"...."+(n-1).^(n)C_(n-2).^(n)C_(n) .

Find the following sums : (i) .^(n)C_(0)-.^(n)C_(2)+.^(n)C_(4)-.^(n)C_(6)+"....." (ii) .^(n)C_(1)-.^(n)C_(3)+.^(n)C_(5)-.^(n)C_(7)+"...." (iii) .^(n)C_(0)+.^(n)C_(4)+.^(n)C_(8)+.^(n)C_(12)+"....." (iv) .^(n)C_(2) + .^(n)C_(6) + .^(n)C_(10)+.^(n)C_(14)+"......" (v) .^(n)C_(1) + .^(n)C_(5)+.^(n)C_(9)+.^(n)C_(13)+"...." (vi) .^(n)C_(3) + .^(n)C_(7) + .^(n)C_(11) + .^(n)C_(15) + "....."

CENGAGE ENGLISH-BINOMIAL THEOREM-Concept Application Exercise 8.1
  1. The first three terms in the expansion of (1+a x)^n(n!=0) are 1,6xa n ...

    Text Solution

    |

  2. If the coefficient of 4th term in the expansion of (a+b)^n is 56, then...

    Text Solution

    |

  3. The two successive terms in the expansion of (1+x)^24 whose coefficie...

    Text Solution

    |

  4. If the number of terms in the expansion of (x+y+z)^n are 36, then find...

    Text Solution

    |

  5. Find the value of 1/(81^n)-((10)/(81^n))^(2n)C1+((10^2)/(81^n))^(2n)C2...

    Text Solution

    |

  6. sum(r=0)^n(-1)^r^n Cr[1/(2^r)+3/(2^(2r))+7/(2^(3r))+(15)/(2^(4r))+ u p...

    Text Solution

    |

  7. Find n in the binomial (2^(1/3)+1/(3^(1/3)))^n , if the ration 7th ter...

    Text Solution

    |

  8. If the coefficients of (r-5)^(t h) and (2r-1)^(t h) terms in the expan...

    Text Solution

    |

  9. Find the number of irrational terms in the expansion of (5^(1//6)+2^(1...

    Text Solution

    |

  10. Represent cos 6 theta in terms of cos theta.

    Text Solution

    |

  11. Find the number of nonzero terms in the expansion of (1+3sqrt(2)x)^9+(...

    Text Solution

    |

  12. Find the value of (sqrt(2)+1)^6-(sqrt(2)-1)^6dot

    Text Solution

    |

  13. Find the degree of the polynomial 1/(sqrt(4x+1)){((1+sqrt(4x+1))/2)^7-...

    Text Solution

    |

  14. Let R=(5sqrt(5)+11)^(2n+1)a n df=R-[R]w h e r e[] denotes the greatest...

    Text Solution

    |

  15. If the middle term in the binomial expansion of (1/x+xsinx)^(10) is eq...

    Text Solution

    |

  16. Find the middle term in the expansion of (x^2+1/(x^2)+2)^ndot

    Text Solution

    |

  17. If the number of terms in the expansion (1+2x-3y+4z)^(n) is 286, then...

    Text Solution

    |