Home
Class 12
MATHS
Represent cos 6 theta in terms of cos th...

Represent `cos 6 theta` in terms of `cos theta`.

Text Solution

AI Generated Solution

The correct Answer is:
To represent \( \cos 6\theta \) in terms of \( \cos \theta \), we can use the binomial theorem and some trigonometric identities. Here’s a step-by-step solution: ### Step 1: Use Euler's Formula We start with the expression for \( \cos 6\theta \) using Euler's formula: \[ \cos 6\theta = \text{Re}(e^{i6\theta}) = \text{Re}((e^{i\theta})^6) = \text{Re}((\cos \theta + i \sin \theta)^6) \] ### Step 2: Expand Using Binomial Theorem Using the binomial theorem, we expand \( (\cos \theta + i \sin \theta)^6 \): \[ (\cos \theta + i \sin \theta)^6 = \sum_{k=0}^{6} \binom{6}{k} (\cos \theta)^{6-k} (i \sin \theta)^k \] This gives us: \[ = \sum_{k=0}^{6} \binom{6}{k} (\cos \theta)^{6-k} i^k (\sin \theta)^k \] ### Step 3: Separate Real and Imaginary Parts The real part corresponds to the terms where \( k \) is even: \[ \cos 6\theta = \binom{6}{0} \cos^6 \theta + \binom{6}{2} \cos^4 \theta (-\sin^2 \theta) + \binom{6}{4} \cos^2 \theta (-\sin^4 \theta) + \binom{6}{6} (-\sin^6 \theta) \] Calculating the binomial coefficients: \[ = \cos^6 \theta - 15 \cos^4 \theta \sin^2 \theta + 15 \cos^2 \theta \sin^4 \theta - \sin^6 \theta \] ### Step 4: Substitute \( \sin^2 \theta \) Using the identity \( \sin^2 \theta = 1 - \cos^2 \theta \): \[ = \cos^6 \theta - 15 \cos^4 \theta (1 - \cos^2 \theta) + 15 \cos^2 \theta (1 - \cos^2 \theta)^2 - (1 - \cos^2 \theta)^3 \] ### Step 5: Simplify the Expression Now we simplify the expression: 1. Expand \( \sin^2 \theta \): - \( \sin^2 \theta = 1 - \cos^2 \theta \) - \( \sin^4 \theta = (1 - \cos^2 \theta)^2 = 1 - 2\cos^2 \theta + \cos^4 \theta \) - \( \sin^6 \theta = (1 - \cos^2 \theta)^3 = 1 - 3\cos^2 \theta + 3\cos^4 \theta - \cos^6 \theta \) 2. Substitute back into the equation and combine like terms: \[ \cos 6\theta = \cos^6 \theta - 15 \cos^4 \theta (1 - \cos^2 \theta) + 15 \cos^2 \theta (1 - 2\cos^2 \theta + \cos^4 \theta) - (1 - 3\cos^2 \theta + 3\cos^4 \theta - \cos^6 \theta) \] ### Step 6: Collecting Terms After collecting and simplifying all terms, we arrive at: \[ \cos 6\theta = 32 \cos^6 \theta - 48 \cos^4 \theta + 18 \cos^2 \theta - 1 \] ### Final Result Thus, the representation of \( \cos 6\theta \) in terms of \( \cos \theta \) is: \[ \cos 6\theta = 32 \cos^6 \theta - 48 \cos^4 \theta + 18 \cos^2 \theta - 1 \]

To represent \( \cos 6\theta \) in terms of \( \cos \theta \), we can use the binomial theorem and some trigonometric identities. Here’s a step-by-step solution: ### Step 1: Use Euler's Formula We start with the expression for \( \cos 6\theta \) using Euler's formula: \[ \cos 6\theta = \text{Re}(e^{i6\theta}) = \text{Re}((e^{i\theta})^6) = \text{Re}((\cos \theta + i \sin \theta)^6) \] ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.2|10 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.3|7 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Example|10 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos

Similar Questions

Explore conceptually related problems

cos 2 theta in terms of cos 4 theta,

Write cos 4 theta in terms of cos theta.

cos 20 theta in terms of sin 5 theta .

If 5 cos theta = 6 , sin theta , evalutate : (12 sin theta - 3cos theta)/(12 sin theta + 3 cos theta)

Simplify be reducing to a single term : cos 5 theta cos 2 theta - sin 5 theta sin 2 theta.

The value of the expression sin^6 theta + cos^6 theta + 3 sin^2 theta. cos^2 theta equals

If f (theta) = [[cos^(2) theta , cos theta sin theta,-sin theta],[cos theta sin theta , sin^(2) theta , cos theta ],[sin theta ,-cos theta , 0]] ,then f ( pi / 7) is

Solve : cos 6 theta + cos 4 theta + cos 2 theta + 1 = 0, 0^(@) lt theta lt 180^(@)

Prove that ( cos theta + cos 2 theta + cos 3 theta + cos 4 theta)/(sin theta + sin 2 theta + sin 3 theta + sin 4 theta)= cot ""(5theta)/(2).

Prove (cos 3theta+ 2 cos 5theta+ cos 7theta)/( cos theta+ 2 cos 3theta+ cos 5theta)= cos 2theta- sin 2theta tan 3theta .

CENGAGE ENGLISH-BINOMIAL THEOREM-Concept Application Exercise 8.1
  1. The first three terms in the expansion of (1+a x)^n(n!=0) are 1,6xa n ...

    Text Solution

    |

  2. If the coefficient of 4th term in the expansion of (a+b)^n is 56, then...

    Text Solution

    |

  3. The two successive terms in the expansion of (1+x)^24 whose coefficie...

    Text Solution

    |

  4. If the number of terms in the expansion of (x+y+z)^n are 36, then find...

    Text Solution

    |

  5. Find the value of 1/(81^n)-((10)/(81^n))^(2n)C1+((10^2)/(81^n))^(2n)C2...

    Text Solution

    |

  6. sum(r=0)^n(-1)^r^n Cr[1/(2^r)+3/(2^(2r))+7/(2^(3r))+(15)/(2^(4r))+ u p...

    Text Solution

    |

  7. Find n in the binomial (2^(1/3)+1/(3^(1/3)))^n , if the ration 7th ter...

    Text Solution

    |

  8. If the coefficients of (r-5)^(t h) and (2r-1)^(t h) terms in the expan...

    Text Solution

    |

  9. Find the number of irrational terms in the expansion of (5^(1//6)+2^(1...

    Text Solution

    |

  10. Represent cos 6 theta in terms of cos theta.

    Text Solution

    |

  11. Find the number of nonzero terms in the expansion of (1+3sqrt(2)x)^9+(...

    Text Solution

    |

  12. Find the value of (sqrt(2)+1)^6-(sqrt(2)-1)^6dot

    Text Solution

    |

  13. Find the degree of the polynomial 1/(sqrt(4x+1)){((1+sqrt(4x+1))/2)^7-...

    Text Solution

    |

  14. Let R=(5sqrt(5)+11)^(2n+1)a n df=R-[R]w h e r e[] denotes the greatest...

    Text Solution

    |

  15. If the middle term in the binomial expansion of (1/x+xsinx)^(10) is eq...

    Text Solution

    |

  16. Find the middle term in the expansion of (x^2+1/(x^2)+2)^ndot

    Text Solution

    |

  17. If the number of terms in the expansion (1+2x-3y+4z)^(n) is 286, then...

    Text Solution

    |