Home
Class 12
MATHS
Find the last three digits of the number...

Find the last three digits of the number `27^(27)dot`

Text Solution

AI Generated Solution

The correct Answer is:
To find the last three digits of the number \( 27^{27} \), we can follow these steps: ### Step 1: Rewrite the base We start by rewriting \( 27 \) in terms of its prime factors: \[ 27 = 3^3 \] Thus, we can express \( 27^{27} \) as: \[ 27^{27} = (3^3)^{27} = 3^{81} \] ### Step 2: Find \( 3^{81} \mod 1000 \) To find the last three digits, we need to compute \( 3^{81} \mod 1000 \). We can use the Chinese Remainder Theorem (CRT) by breaking it down into modulo \( 8 \) and modulo \( 125 \). ### Step 3: Calculate \( 3^{81} \mod 8 \) Calculating \( 3^{81} \mod 8 \): \[ 3^2 = 9 \equiv 1 \mod 8 \] Thus, \( 3^{81} = (3^2)^{40} \cdot 3 \equiv 1^{40} \cdot 3 \equiv 3 \mod 8 \). ### Step 4: Calculate \( 3^{81} \mod 125 \) Now, we calculate \( 3^{81} \mod 125 \) using Euler's theorem. First, we find \( \phi(125) \): \[ \phi(125) = 125 \left(1 - \frac{1}{5}\right) = 125 \cdot \frac{4}{5} = 100 \] Since \( 81 < 100 \), we can directly compute \( 3^{81} \mod 125 \). We can calculate powers of \( 3 \) modulo \( 125 \): \[ 3^1 = 3 \] \[ 3^2 = 9 \] \[ 3^4 = 81 \] \[ 3^5 = 243 \equiv 118 \mod 125 \] \[ 3^{10} = (3^5)^2 = 118^2 = 13924 \equiv 74 \mod 125 \] \[ 3^{20} = (3^{10})^2 = 74^2 = 5476 \equiv 101 \mod 125 \] \[ 3^{40} = (3^{20})^2 = 101^2 = 10201 \equiv 76 \mod 125 \] Now, we can compute \( 3^{80} = (3^{40})^2 \): \[ 3^{80} = 76^2 = 5776 \equiv 26 \mod 125 \] Finally, we compute \( 3^{81} = 3^{80} \cdot 3 \): \[ 3^{81} \equiv 26 \cdot 3 = 78 \mod 125 \] ### Step 5: Solve the system of congruences Now we have the two congruences: \[ 3^{81} \equiv 3 \mod 8 \] \[ 3^{81} \equiv 78 \mod 125 \] We can use the method of successive substitutions to solve these: Let \( x \equiv 78 \mod 125 \). We can express \( x \) as: \[ x = 125k + 78 \] Substituting into the first congruence: \[ 125k + 78 \equiv 3 \mod 8 \] Calculating \( 125 \mod 8 \): \[ 125 \equiv 5 \mod 8 \] Thus: \[ 5k + 78 \equiv 3 \mod 8 \] Calculating \( 78 \mod 8 \): \[ 78 \equiv 6 \mod 8 \] So we have: \[ 5k + 6 \equiv 3 \mod 8 \implies 5k \equiv -3 \equiv 5 \mod 8 \] Multiplying both sides by the modular inverse of \( 5 \mod 8 \), which is \( 5 \) (since \( 5 \cdot 5 \equiv 1 \mod 8 \)): \[ k \equiv 5 \cdot 5 \equiv 25 \equiv 1 \mod 8 \] Thus, \( k = 8m + 1 \) for some integer \( m \). Substituting back: \[ x = 125(8m + 1) + 78 = 1000m + 203 \] Thus: \[ x \equiv 203 \mod 1000 \] ### Final Answer The last three digits of \( 27^{27} \) are: \[ \boxed{203} \]

To find the last three digits of the number \( 27^{27} \), we can follow these steps: ### Step 1: Rewrite the base We start by rewriting \( 27 \) in terms of its prime factors: \[ 27 = 3^3 \] Thus, we can express \( 27^{27} \) as: ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.3|7 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.4|13 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.1|17 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos

Similar Questions

Explore conceptually related problems

Find the last two digits of the number 27^(27)dot

Find the last two digits of the number (23)^(14)dot

Find the last digit, last two digits and last three digits of the number (81)^(25)

Write last two digits of the number 3^(400)dot

Write last two digits of the number 3^(400)dot

Find the last digit of the number (13)^(12) .

Find the last three digits in 11^(50)

Sum of last three digits of the number N=7^(100)-3^(100) is.

The last two digits of the number 19^(9^(4)) is

The last two digits of the number 19^(9^(4)) is