Home
Class 12
MATHS
Find the value of {3^(2003)//28}, w h e ...

Find the value of `{3^(2003)//28}, w h e r e{dot}` denotes the fractional part.

Text Solution

Verified by Experts

The correct Answer is:
`19//28`

`E = 3^(2003) = 3^(2001) xx 3^(2) = 9(27)^(667) = 9(28-1)^(667)`
`rArr E = 9[.^(667)C_(0) 28^(667) - .^(667)C_(1)(28)^(666) + "….."-.^(667)C_(667)]`
`= 9 xx 28k - 9`
`rArr E/28 = 9k - (9)/(28) = 9k = 1 + 19/28`
That means if we divide `3^(2003)` by `28`, the remainder is `19`. Thus, `{(3^(2003))/(28)} = 19/28`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.3|7 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.4|13 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.1|17 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos

Similar Questions

Explore conceptually related problems

Find the domain and range of f(x)=log{x},w h e r e{} represents the fractional part function).

Find the domain and range of f(f)=log{x},w h e r e{} represents the fractional part function).

Find the value of int_(-1)^1[x^2+{x}]dx ,w h e r e[dot]a n d{dot} denote the greatest function and fractional parts of x , respectively.

Find the value of : int_0^(10)e^(2x-[2x])d(x-[x])w h e r e[dot] denotes the greatest integer function).

Find the value of : int_0^(10)e^(2x-[2x])d(x-[x])w h e r e[dot] denotes the greatest integer function).

Evaluate int_(-3)^(5) e^({x})dx , where {.} denotes the fractional part functions.

Period of the function f(x)=sin(sin(pix))+e^({3x}) , where {.} denotes the fractional part of x is

The value of the integral int_(-4)^(4)e^(|x|){x}dx is equal to (where {.} denotes the fractional part function)

lim_(x->-1)1/(sqrt(|x|-{-x}))(w h e r e{x} denotes the fractional part of (x) ) is equal to (a)does not exist (b) 1 (c) oo (d) 1/2

If the domain of y=f(x)i s[-3,2], then find the domain of g(x)=f(|[x]|),w h e r[] denotes the greatest integer function.